

Human Language Technology: Applications to Information Access

Lesson 11: Meeting Browsers

December 22, 2016

EPFL Doctoral Course EE-724 Andrei Popescu-Belis, Idiap Research Institute

The problem

- What can we do to help people find information in archives of multimedia meeting recordings?
- Alternative answers
 - 1. First find out what people need, then design and implement
 - 2. First show people what is possible (design and implement), then find out if they need/like it
 - 3. Try $1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow ...$

Meeting browsers: a definition

- Assistance tools that help humans navigate through multimedia records of meetings
- Help people to achieve two goals
 - 1. Get a general idea about a meeting's content
 - 2. Find specific pieces of information in meetings
 - either previously unknown to the user (*discovery*)
 - or already known but uncertain (*verification*)

Plan of the lesson

- Outline
 - software design for HLT applications (including meeting browsers)
 - extracting user needs for m. b.
 - designing multimedia m. b.
 - evaluating m. b. in use
- Note
 - this work is related to the achievements and lessons learned from three large projects: Swiss IM2 (2002-2013) and EU AMI + AMIDA (2004-2010)

Software development process

- Waterfall model
 - users formulate <u>requirements</u> (needs) for a task
 - designers write <u>specifications</u> based on them
 - developers create a product that satisfies specifications
 - the product is <u>evaluated</u> against specifications and task
- Difficulties of this model for HLT
 - users' needs are often underspecified or beyond reach
 - designers may also suggest useful functionalities
- Solution: iterative development
 - back-and-forth exchanges between users and developers

Meeting support technology: two methods to elicit user requirements

- 1. Look at how people use existing technology in order to infer new needs (requirements)
 - good for assessing current practice
 - but how to infer precise specifications for technology that does not exist yet?
- Ask users to describe functionalities that would "help them with meetings"
 - users must be guided towards a task based on what is feasible → possible bias

- if not guided, suggestions may be totally unrealistic

Jaimes [7]	15	interviews	practice	Importance of audio-visual
			-	records for checking or better
				understanding specific points
				in a meeting.
	519	questionnaires	practice	Importance of visual cues for
				recall.
Whittaker	12	interviews	practice	Importance of personal notes,
[21]				need for to-do summaries.
Cremers [4]	8	interviews	practice	Need for summaries and to-do
			/ needs	lists.
Bertini [2]	118	questionnaires	practice	Low utility of audio-visual
			/ needs	records, except for persons
				who missed a meeting or for
				finding specific information.
Banerjee [1]	12	interviews	practice	Importance of thematic con-
				tent.
Lisowska [10]	28	elicitation of	needs	Heterogeneity of queries, ei-
		queries		ther about the interaction or
				about simple items in meet-
				ings.
Wellner [20]	21	elicitation of	needs	Importance of facts, deci-
		observations		sions and arguments leading
		of interest		to them, agenda, and dates.
Lisowska [9]	91	Wizard-of-Oz	needs	Importance of training for
				modality choice in meeting
				browsing.

Synthesis of user studies (1)

- User requirements vary a lot across studies
- Main dimensions of user requirements
 - 1. Targeted time span: utterance, fragment, meeting
 - 2. Targeted media: audio, video, docs, slides, emails
 - 3. Complexity of searched information: present in the media or inferred from content
 - 4. Complexity and modality of query
 - Depending on context, the expressed needs cover each possible value of each dimension (!)

Synthesis of user studies (2)

- Entire recordings are seen as useless without tools enabling "intelligent" access to their content
- Two types of tools
 - 1. Summary of an entire meeting
 - 2. Detailed information related to a meeting
 - a. "easy" to extract from metadata and files
 - dates, participants, documents, presentations
 - b. "difficult", requires some form of content analysis
 - decisions and tasks; other facts and arguments; aspects of interaction or media; agenda; date of next meeting
- → Two main applications: summarizers & browsers

Examples of both types

- 1. Meeting summarization systems
 - structured around its main topics (CMU ISL "Meeting Browser")
 - structured around the action items / tasks (CALO browser)
- 2. Fact finding or verification
 - check figures, decisions, assigned tasks, document fragments
 - analyze meeting data to build high-level indexes
 - features: speech transcript, turn taking, attention focus, slides, notes
 - integrated in multimodal interfaces \rightarrow locate information
- Surveys
 - M.M. Bouamrane and S. Luz, "Meeting Browsing: State-of-the-Art Review", Multimedia Systems, 12:45, 2007.
 - S. Tucker and S. Whittaker, "Accessing Multimodal Meeting Data: Systems, Problems, and Possibilities", Machine Learning for Multimodal Interaction, LNCS 3361, Springer-Verlag, 2005.
 - Z. Yu and Y. Nakamura, "Smart Meeting Systems: A Survey of State-of-the-Art and Open Issues," ACM Computing Surveys, 42:2, 2010.

Meeting browsers for fact finding

- Speech-centric browsers
 - use audio recordings and/or the transcript
 - often with video
 - sometimes with higherlevel annotations
 - named entities, thematic episodes, keywords, etc.

- Document-centric browsers
 - use content of documents related to meetings
 - sometimes with annotations
 - slide change, speech/ document alignment

Examples of speech-centric browsers

Examples of document-centric browsers

A sample meeting browser: TQB the Transcript-based Query & Browsing interface

- Available media and annotations
 - audio, documents (slides, notes), snapshot of room, but no video
 - manual transcript aligned with audio track
 - utterance segmentation, dialogue acts
 - topic segmentation, keywords, references to documents
- Note: TQB can also use ground-truth annotations and transcript in order to test the impact of imperfect processing
- Using TQB
 - users can query each of the above annotations
 - possibly values for each field are displayed
 - TQB returns all utterances
 - each result can be viewed in its meeting context (transcript + audio)

TQB example : looking for statements about "poster" by "Denis"

Evaluation of meeting browsers: the BET protocol

How to evaluate a meeting browser?

- TREC Question Answering task (≥ TREC-8, 1999)
 - provides series of test questions and correct answers
 - evaluation of fully automated QA systems:
 - similarity of strings AND correctness of supporting document
- Who defined the questions?
 - TREC QA combined submissions from all participants
- Adaptation to meeting browser evaluation
 - ask "neutral" observers to define questions
 - evaluate humans who are using meeting browsers

The Browser Evaluation Test

- 1. Collect "questions" about a meeting
 - observers view a meeting recording
 - formulate pairs of parallel statements about it
 - observations of interest = facts that were salient for participants
 - one statement is factually true, the other is false
 - rank statements based on importance (# of observers)
- Use a browser to answer "questions" in limited time
 i.e. subjects must discriminate T vs. F in BET pairs
- 3. Measure performance
 - precision (# of correctly discriminated pairs) ~ effectiveness
 - speed (# of pairs processed per unit of time) \sim efficiency

Outline of BET definition & application

(from Wellner et al. 2005)

The BET test set

- 3 meetings from AMI
 - IB4010: movie club
 - IS1008c: remote control
 - ISSCO-024: furnishing
- 21 observers
- 572 pairs of statements
 - consolidated into 350 pairs
 - average size of consolidated groups
 - ~2 for all groups
 - ~5 for the questions used
 - this is a measure of "interobserver" agreement on what facts are important

- Scope of statements
 - 63% refer to specific moments in a meeting
 - 30% refer to short intervals
 - 7% about entire meeting
- Content of statements
 - decisions (8%)
 - other stated facts, including arguments (76%)
 - related to the interaction or the media (11%)
 - about the agenda (2%)
 - date of next meeting (2%)

Sample questions: T/F pairs

- IB4010 Movie Club
 - The group decided to show The Big Lebowski /// The group decided to show Saving Private Ryan
 - Agnes did not like the third advertising poster, it had too many colours /// Agnes did not like the third advertising poster, it had no colour
 - Everyone had seen Goodfellas /// No one had seen Goodfellas
- IS1008c Remote Control Design
 - According to the manufacturers, the casing has to be made out of rubber. /// According to the manufacturers, the casing has to be made out of wood.
 - Christine suggested that customers might want to submit their own design via the internet as custom orders. /// Christine suggested that customers would not be interested in custom design and prefer off-the-shelf products.
- See also the practical session

Results of applying the BET to the TQB browser

- 28 students (in translation, no experience with m.b.)
- half started with IB4010 and continued with IS1008c (IB_IS)
- the other half did the reverse order (IS_IB)
- time: about 25 min. for IB4010 and about 13 for IS1008c

Average TQB speed and precision

- Is performance across groups similar? Yes
- Are the questions over the 2 meetings of comparable difficulty?
 almost, but IB4010 seems easier than IS1008c, though it's longer

<u>IS1008c</u>: Individual scores and averages when it is seen first (blue diamonds) vs. when it is seen second (pink squares)

- Speed increases when IS1008c is seen second
- Precision does not increase significantly

<u>IB4010</u>: Individual scores and averages when it is seen first (blue diamonds) vs. when it is seen second (pink squares)

• (results are comparable to IS1008c)

A view of the training effect (1st vs. 2nd meeting): speed improves, but precision not much

• Here, values for each meeting are normalized by the overall average for the meeting to compensate for variations in difficulty

Speed and precision per question: IS1008c group IS_IB (diamonds), group IB_IS (squares), first 6 questions

<u>IS1008c</u>: precision for first 6 questions, when the meeting is seen first vs. when it is seen second

- Green arrows: precision and speed increase
- Red arrows: precision increases but speed decreases

Sample BET results for several browsers

Sample BET results: nb. of subjects (NS), average time per question (T), precision (P), with confidence intervals (±CI)

Browser	Condition	NS	T(s)	\mathbf{CI}	Р	\mathbf{CI}
Audio-based	Speedup	12	99	26	0.78	0.06
browsers [13]	Overlap	15	88	23	0.73	0.08
JFerret	BET set (pilot)	10	100	43	0.68	0.22
[20]	5 gisting questions	5	$<\!180$	0	0.45	0.34
[21, p. 210]	5 factual questions	5	$<\!180$	0	0.76	0.25
TQB	1^{st} meeting	28	228	129	0.80	0.09
[13]	2^{nd} meeting	28	92	16	0.85	0.06
	Both meetings	28	160	66	0.82	0.06
FriDoc	With speech /	8	113	n/a	0.76	n/a
[16]	document links					
	Without links	8	136	n/a	0.66	n/a
Archivus	T/F questions	80	127	36	0.87	0.12
[11, Ch. 6.6]	Open questions	80	n/a	n/a	0.65	0.22
AutoBET	Movie club meeting	5fCV	<1	n/a	0.57	0.06
[8]	Remote control meeting	5 f CV	<1	n/a	0.64	0.18

Conclusions: lessons learned

- Requirements depend on how subjects are questioned
 - a fixed specification cannot be set from the start
 - user-studies must be gradually focused toward a tractable task
- Technology providers have various views of what is "useful"
 - they tend to evaluate technology from their own perspective
 - their view of HLT utility might differ from users' view
- Combine user-driven and technology-driven approaches
 - go back-and-forth from the users' perspective to the developers' one
 - specify a reasonable task and the related evaluation method
 - → here, the fact-finding task and the Browser Evaluation Test

Future of meeting browsers

- Some existing products
 - conference browsers: Klewel (Idiap), SMAC (CERN)
 - potential commercial success
- Extension #1: automatic browsers
 - directly answer questions from users
 - our practical exercise: discriminate BET pairs automatically
 - spoken QA during conversations
- Extension #2: query-free automatic browsers
 - answer implicit queries for accessing meeting archives
 - context-sensitive just-in-time information retrieval

References

- A. Popescu-Belis, D. Lalanne, and H. Bourlard, "Finding Information in Multimedia Meeting Records", *IEEE Multimedia*, vol. 19, p. 48-57, 2012.
- P. Wellner et al., "A Meeting Browser Evaluation Test," *Proc. ACM SIGCHI Conf. Human Factors in Computing Systems (CHI 2005)*, ACM Press, 2005, pp. 2021-2024.
- A. Popescu-Belis et al., "Towards an Objective Test for Meeting Browsers: The BET4TQB Pilot Experiment," *Proc. 4th Workshop Machine Learning for Multimodal Interaction (MLMI 2007)*, LNCS 4892, Springer-Verlag, 2008, pp. 108-119.
- S. Renals et al., *Multimodal Signal Processing: Human Interactions in Meetings*, Cambridge Univ. Press, 2012.