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Overcoming the cross-lingual barrier

e Part | of the HLT course dealt with the question: “how
to find a needle in a haystack?”
— but at least, we knew what a needle looks like
— because experiments were in English

e But, in a globalized world ... i.e. on the Web, relevant
content may be in a language which differs
from the query: so, can a system still find it?

— if it finds it: how will you understand it?
— options: query translation vs. document translation

=» Need for machine translation



Plan of today’s lesson (#5)

Some uses and difficulties of machine translation (MT)

Types of rules-based MT methods

— direct | transfer | interlingua | example-based

Principles of statistical machine translation (SMT)

— phrase-based | hierarchical | neural [talk by L.Miculicich]
Brief history of MT and landmark systems

Measuring the quality of MT (evaluation)



Machine translation

 Computational method to translate from a
source language into a target language

* words < sentences < texts

* Two possible visions
1. “fully-automatic high-quality MT” (FAHQMT)

* replace human translators with machines

— and even interpreters of spoken language (with ASR)

2. “good applications for crummy MT”
[Hovy & Church 1993]



Types of MT use

* Assimilation: user monitors large number of foreign texts
— document routing / sorting
— information extraction / summarization
— cross-language information retrieval

* Dissemination: deliver texts in a foreign language to others
— need for high-quality output
— can be combined with human post-editing

e CAT = computer-aided translation # MT
» specific tools or workbenches for CAT, e.g. “translation memories”

e Communication: real-time or delayed across languages



Role of the context of use

* Types of MT use (previous slide), but also:

— Profiles of targeted users
e SLand TL proficiency

e available time

— Types of source texts

- Different requirements on MT models
and expected quality levels



Difficulties of MT (1/2)

Words do not have unigue meanings + each meaning can have several
translations = there are many options to choose from

voler (FR) = steal or fly (EN)
bank (EN) = banque or (rive or berge or bord) (FR)

Multi-word expressions (idioms) cannot generally be
translated by translating their components individually

to kick the bucket (EN) = casser sa pipe (FR)
Words are generally “inflected” in sentences: voir = voient

Order of words in sentences vary greatly with the language

Have you seen him? (EN) —> Hast du ihn gesehen? (DE)
- L'as-tu vu? (FR)



Difficulties of MT (2/2)

Technical terms and compounds

Pronouns: mismatches even between EN/FR
— (FR) il / elle &> (EN) he / she [ it

Verb tenses: EN/FR mismatches

— (FR) ‘passé composé’ / ‘imparfait’ <>
(EN) ‘simple past’ / ‘past perfect’

Politeness-related phenomena
— hard to guess, e.g. you € tu [/ vous

So it may seem that MT would require some form of
“understanding” to address all these issues ... or not?



Complexity of MT models:
Vauquois’ triangle a.k.a. MT pyramid
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Machine translation models

e Rule-based MT

— direct: word for word with local rewriting rules

— transfer: analysis + transfer + synthesis
* translation rules operate on a syntactic representation

— interlingua: through a language-independent
representation of the meaning (pivot or ontology)

* Corpus-based MT (data-driven or “empirical”)
— example-based (EBMT)
— statistical (SMT): PBSMT, HMT, NMT

* Note: speech translation = ASR + MT (often SMT) + Synthesis



Direct MT

No representation of meaning or syntactic structure
— i.e. no grammar, no semantic resource, no ontology

Knowledge is at the word level: “dictionaries”

Dictionaries include, for each source word (and phrases)
— lexical information (number, gender, etc.)
— local syntactic constraints

— possible translations with selection conditions and lexical
information on translation

— local reordering rules

Translation: dictionary lookup | some disambiguation |
search for translations | apply rules

Robust, fast, flexible dictionaries



Deeper rule-based models

 Transfer-based MT

— can operate on shallow syntactic representations, or more
semantically-oriented ones (predicate/argument)

— requires powerful and precise analysis components

* |nterlingua-based MT

— make real the dream of representing meaning
e e.g. through an ontology such as UNL or CYC
— adapted to limited domains with existing ontologies

— seems appealing when many language pairs are needed,
to reduce development costs from n?to n



Example-based MT

Use a database of already translated examples to
translate new sentences

— cut the existing examples into meaningful chunks
— determine the translations of chunks

New sentence
— cut it into chunks that are found in the database
— generate new translation

Can operate on linear chunks or on sub-trees

Relationship to reasoning by analogy
Connected to translation memories (CAT)



Statistical MT (Bayesian, generative)

* Translation as a noisy channel (W. Weaver)

— source sentence s <> target sentence t
— given s, what is the most likely translation t?

* Main idea
— learn a translation model & a target-language model
— decode source sentence: find most likely t given s

P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer (1993). The mathematics of
statistical machine translation: parameter estimation. Computational Linguistics,
19(2), 263-311.
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Formal definition

* Goal: given s, find t which maximizes P(t|s)

* Rewritten using Bayes’s theorem:

argmax P(t | s) =argmax P(slt) P(t)

teTl 7 \

translation language
model model (target)



Why not estimate and
maximize P(t|s) directly?

* Simplified answer: it is better to decompose the problem
— a kind of “divide and conquer”
— TM: how likely it is that a string is a translation of another string
— LM: how likely it is that a string is well-formed

e Slightly less simplified answer
— one can only approximate very roughly P(t|s) for all sentences

 this will often have non-zero probabilities on ill-formed strings

* chances to find a well-formed string when maximizing P(t|s)
directly are close to zero

— but, when maximizing P(s|t)
* it doesn’t matter if ill-formed strings receive non-zero probability
» well-formedness is accounted for by the P(t) term (language model)



1. The translation model

Learned using a parallel corpus
— i.e. many pairs of source and target sentences (translated by humans)

— in SMT, it is often not important which one is the original sentences and which
one is the human translation; parallel corpora often ignore this difference

Goal : find a way to compute P(s|t) given any sand t
— starting with all (s, t) pairs of the corpus

In other words, learn the parameters that will provide an estimate of
P(s|t) for a previously unseen (s, t) pair
— idea: learn alignments between fragments of s and t, i.e. the parameters that
represent how (groups of) words are related across languages

Of course, 1:1 alignment is quite infrequent.
Naturellement, un alignement 1 a 1 est tres peu frequent.
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Word-based approach: use word “alignments”
to compute probabilities of translation

P(s|t)= > P(s,alt)

acA(s,t)

where A(s, t) are all possible “alignments” of s and t

P(s,a|t)= Htr(sj | taj)
j=1

where tr(s;| taj) is the translation probability of word taj as
word s;, at positions j and a; (= alignment variable)



Advanced translation models

1. Better than word-based: phrase-based models

— alignments between “phrases” = groups of words,
however not linguistically motivated phrases

— phrase-based decoding: capture some lexical reordering,
and translation of idiomatic expressions

2. Abstract transfer representations: hierarchical
— useful to model reordering of words
— using machine learning to learn how to parse

— syntax can be used on source side, on target side, or both:
tree-to-string | string-to-tree | tree-to-tree



2. Language modeling

* Probability of a given sequence of words in
the target language, learned from a corpus

e Often n-gram based, e.g. trigram:

m+2

P(Wl,...,Wm):HP(W,- |Wi—1’Wi—2)
i=1

with provision for initial and final marks (=words)

— noted generally <s> and </s>



3. Decoding

e Search for the best target sentence given the

source sentence: t, =argmax (P(s|t)-P(t))
teT

* Greedy hill-climbing search
— start with a word-for-word translation
— trying various changes to improve likelihood
 Beam search decoding
— examine source sentence from left to right
— prune hypotheses to reduce search space



Some history of MT

First attempts RU = EN in the 1950s
— Weaver’s code model, Georgetown experiment (IBM)

ALPAC Report halts US funding in 1966
Commercial success of SYSTRAN at end 1970s (EU)
Rule-based systems in the 1980s, some interlingua ones

Statistical MT made major progress since 1990s

— related to progress in computing, modeling, metrics
— PBSMT/HMT was the state-of-the-art until 2015 = neural MT

Today: MT systems are still quite imperfect but widely used
— individual or corporate use, Web-based, mobile devices



Examples of systems

IBM Georgetown
demonstration 19ss

METEO by TAUM 1081

SYSTRAN company 197

Reverso by Promt
and Softissimo 1997

Metal / T1 /
Comprendium 19ss

KANT and Catalyst by
CMU for Caterpillar 199

UNL approach 1996
Candide from IBM 199,

Babelfish 1997

Statistical tools 2000

— GIZA++ aligner

— Moses, Pharaoh, cdec
— SRILM, IRSTLM

— Europarl data

Language Weaver 200
Google Translate 2006



Which MT method is better?

Consider the following example:

Source sentence
Les résultats d'études récentes le démontrent clairement : plus la prévention
commence tot, plus elle est efficace.

Google translate (PBSMT or NMT)
The results of recent studies show clearly: more prevention starts early, it is more
effective.

Systran box (direct)
The results of recent studies show it clearly: the more the prevention starts early,
the more it is effective.

Systran PureNMT (NMT, since October 2016)
The results of recent studies clearly demonstrate this: the more prevention starts
early, the more effective it is.

Metal / L&H T1 / Comprendium (transfer)
The results of recent studies demonstrate it clearly: the earlier the prevention
begins, the more efficient it|she is.
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Measuring the quality of MT

Exact quantification is difficult for non-humans
— maybe as difficult as MT itself (with some reason)
— more about it in Lesson 8

MT errors are very varied in nature
— have contributions to overall quality

Perfect or unintelligible translations are easy to score
(max / min), but what about intermediary ones?

Two types of metrics
— applied by humans
— automatic ones: generally using a reference translation



Human-based metrics: subjective

Generally rated per sentence, then averaged

Fluency: is output acceptable in the target language?
— i.e., is it good French, English, etc.
— monolingual judges are sufficient

Adequacy: does output convey same meaning as input?
— requires bilingual judges or a reference translation

Informativeness

— is it possible to answer a set of pre-defined questions using
the translation, with the same accuracy as using the source?

Also: reading time, post-editing time, HTER, Cloze test



Automatic reference-based metrics

Compare a candidate translation to reference translations of the
same input, prepared by professionals

All reference translations are equally acceptable (no unique perfect
translation), so use an average distance

Examples

— BLEU: compares n-gram overlap between the candidate translation
and one or more reference translations

— geometric mean of n-gram precision (n<4) with brevity penalty
e NIST version of BLEU considers information gain of n-grams

— Word Error Rate: mMWER, mPER

— METEOR: harmonic mean of unigram precision and recall
e accepts stemming and synonymy matching

Extremely important for statistical MT as learning criterion



BLEU score (created by IBM for NIST in 2002)

N
BLEU=BP-exp(anlogpn)

n=1

/ Z ZCOUHtm_ref, oung \IGFAM)

__ C€{candidates} ngrameC

BP =min(1,exp(1—r/c)) P, = Z Z
count(ngram)
(brevity penalty) Ce{candidates} ngrameC
count;, erpound () = NUMber of n grams in

r = length of reference translation

c= length of candidate translation common with reference(s), bound/clipped by

maximum number of occurrences in reference

» 2-4 reference translations (concatenated)
* n-grams from 1 to N (often N=4), weighted (often 1/N)



Conclusion

 MT is one of the oldest fields of computer
science and probably its first HLT application

* Looks simple: string to string conversion,
but it is not (and it shouldn’t be)

* Plans of the next lessons
— language models: learning and testing LMs
— translation models: learning based on text alignment
— decoding (i.e. ... translating)
— evaluating translations
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