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Generative modeling for statistical MT

(reminder)

* Noisy channel model

— generation of French sentence f considered as a
transmission of English sentence e into French

— goal: given f, what is the most likely e?
* this will actually produce a translation e of f

* Principle (using Bayes’ theorem)
— learn English language model: P(e)
— learn (reverse) translation model: P(f| e)
— decode source sentence: find* most likely e given f
argmax P(e| f) =argmax (P(f | e)-P(e))

ecEnglish ecEnglish

*find: easier said than done!



Translation modeling for MT

* Main question: how do we model P(e|f)?

— given a foreign (French) sentence f (which we don’t
understand) and an English translation candidate e,

— how do we compute (estimate) the probability that e is
really a translation of f?

 Plan of the lesson
— |IBM Model 1

e expectation-maximization (EM) algorithm
e gquick overview of IBM Models 2-5

— phrase-based translation models
— sentence and word alignment algorithms



Learning a translation model

Estimating parameters of generative model from data
— be able to estimate P(e|f) for anye, f

* P(e|f) or P(f|e) are equivalent because the method is the same

Data = parallel corpus: pairs of source and target
(human-translated) sentences

IBM Models 1 and 2

— IBM Model 1: alignments, EM algorithm, implementation

— IBM Models 2-5: incremental complexification

Evaluation of TMs: perplexity



Alignment function: a

Word mapping from a French sentence to an English one

— DEFINITION: a(i) is the position of the French word that is translated into the
English word which is in position i

Example of a correct alignment

— French:il; a, gravi; la, montagne; enneigée, =
English: he, climbed, the; snowy, mountain

Alignment: a(1)=1, a(2)=3, a(3)=4, a(4)=6, a(5)=5
Remarks

— not injective; not surjective; needs NULL token (0) in French for English words
that are not translations of a French word

Another example

— French: NULL, je, ne, veux; pas, me: taire;, =>
English: |, do, not, want, to; shut, up,

Alignment: a(1)=1, a(2)=0, a(3)=2, a(4)=3, a(5)=0, a(6)=6, a(7)=6



Example of difficult word (and even
sentence) alignments (urafsky & Martin 1999, p. 473)
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Learning to estimate P(e|f)

 |ntuitive idea

— estimate P(e|f) using the probabilities that
a word in e gets translated into a word in f

— these probabilities cannot be computed directly
* unless we have word-aligned training data (but we don’t, for now)

e Betteridea

— introduce the alignment functions as latent variables to be
estimated as well

— word translations and alignments are related:

Ple|f) =2, Ple, alf) butalso P(ale, f)=Ple,alf)/ Plelf)

(applying the chain rule)



Use of the EM algorithm

(Dempster, Laird, Rubin 1977)

* Expectation maximization

— iterative method to estimate model parameters together with
latent variables which have reciprocal dependencies

— applicable when
* equations for parameters and variables cannot be solved directly
» derivative of likelihood function (of parameters) cannot be obtained

* |terate the E and M steps

— Expectation: using current estimate of parameters, compute a
likelihood function over latent variables (and parameters)

— Maximization: re-compute that parameters so that they
maximize the likelihood that was found

* [nitialization: e.g. with uniform probabilities for parameters



EM applied to IBM Model 1

e Reminder:

Ple|f) =2, Ple, alf) and Plale, f) = Ple, alf) / Plelf)

* We can make P(e, a|f) more explicit

— assume it depends only on word translation
probabilities P(e;|f;), noted t(.|.) 2> “Model 1”

— assume these are independent
— note E and F lengths in words of sentences e and f
—then: Ple, alf) = (eI, ¢ tlelf,y)) / (F+1)*

* £is a normalization factor



Making P(e|f) more explicit (E step)

Plelf) =2, Ple, alf) =
= 2 a(1)=0.F - 2a(e)0.r P&, alf)
= 2 g(1)=0.F -+ 2a(e)=0.F (E/(F + 1)E)1_, (tle;|fy)
= (&/(F + 1)%) 2pi1)-0.F - Za(er=0.r Ljca. e tle;] o)
= (e/(F+ 1)) Ty p 2. tle;|f)

Also: P(ale, f) = Hj=1..E( t(ejlfa(j))/zi=0..F t(ejlfi) )



EM applied to IBM Model 1 (again)

e Better use the word-specific t(.|.) values for EM rather
than the full-sentence probability P(e|f)

— they can be estimated directly using counts
— they suffice to compute P(e|f) given the above formulae
— much fewer than P(e|f) values when training on large corpora

 Making the EM steps more explicit

1. Start with uniform t(e;|f;) values

a. Expectation step: compute all P(a|e, f) using all current t(.|.) values

b. Maximization step (of likelihood): update the t(.|.) values (improve
estimates) using counts and P(a| e, f) values

2. lterate (1) and (2) - with a guarantee of convergence!

15



Estimating t(.|.) values using counts

New notation: say we and wf are English and French words

* Define count(we, wf, e, f) as the number of times wf was
translated into we according to all alignments of e and f
weighed by their probability 2 M step:

tiwe|wf) = (X scount(we, wf, e, f)) / (2, 2 scount(we, wf, e, f))

(the denominator is the normalization factor)

* Collecting counts (..., .. ) is Kronecker’s function) = E step:
COU”t(We, W.fl elf) = Zap(a | el f)ijl__ES(Wei ej) 6(Wf1 fa(/))
which are expressed in terms of t(.|.) using last line of slide 14:

= (t(we|wf) 2, (0(we, €) 2.  O(WS, f))) / (X t{welf))



A simple implementation
[from Koehn 2010, page 91]

initialize t(we | wf) uniformly
while <not converged>

for all we, wf do
count(we, wf)=0
total(wf)=0
end for

for, all e, fdo

for, all we € e do
subtotal(we) =0
for; all wf € fdo
subtotal(we) += t(we | wf)
end for,
end for,

for, all we € edo
forc all wf € fdo

count(we, wf) += t(we|wf)/
subtotal(we)

total(wf) += t(we|wf)/
subtotal(we)

end for.
end for,

end for,

for all wf do

for, all we do

t(we | wf) = count(we | wf)/
total(wf)

end for,
end for,

end while



When do we stop?

* Quality of a translation model: perplexity

— if s are sentences from a given corpus
log, PP =- 2., log, P(e.|f.)

* |terate until PP stops decreasing (<converge>)

e |[IBM Model 1

— EM guarantees that Model 1 will converge
towards a global minimum of perplexity



IBM Model 2

* In Model 1, alignment probabilities were factored

out from the formula for P(e, a|f) and from EM

We had: P(e, a|f) = (e / (F+ 1)5) I1_, . tle;lf,))

(the big cat = le gros chat) and
(the big cat = chat gros le) have the same probability!

* Alignment probability distribution P,(i|}, E, F)

— probability that it is the French word in position i that
corresponds to the English word in position j

TherEfOre, P(e, alf) =g’ Hj:]_“E t(ejlfa(/)) Pa(a(./) |./I EI F)



IBM Model 2 (continued)

Equations are transformed similarly to Model 1

'D(e|f) =& szl,_/g Z,‘:o_,,c t(ejlfi) Pa(ilj, E, F)

Computation of (fractional) counts for word translations

count(we, wf, e, f) = 2.1 21 r(tiwe|wf) P,lil}, E, F) 8(we, e)) 5(wf, f)
[ (Zkeo. £ tlwelfy) Py(k1), E, F))

Computation of counts for alignments

count, (i,j, e, f) = tle;\f) Polilj, E, F) / (Zyeo. tle; 1) PolkLji E, F)

Training algorithm similar to Model 1 + start with initial values of
t(e;|f;) obtained by some iterations of Model 1
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IBM Models 1-3

* |BM Model 1: lexical translation
* |BM Model 2: added absolute alignment model

* |BM Model 3: added fertility and absolute distortion models
— probability that one English word generates several French ones
— insertion of NULL token with a fixed probability after each word
— probability of distortion instead of alignment P,(j|i, E, F)

— exhaustive count collection no longer possible = sample the
alignment space to find optimum by hill climbing, from Model 2



IBM Models 4 and 5

* |BM Model 4: adds relative distortion model
— introduces notion of “cept” (sort of phrase)

— models distortion based on the position of a word in a cept
(e.g. initial or not), possibly also on word class (POS-based
or empirically)

* |BM Model 5: deal with a deficiency
— deficiency = alignments can have “superposed” words
— avoid spreading probability over such alignments
— less commonly used than Models 1-4



Using IBM Models for word alighment:
for instance in the GIZA++ tool

Results of IBM Models after EM algorithm =
probabilities for lexical translation and alignment

Can be used to determine the most probable word alignment for each
sentence pair (= the “Viterbi alignment”)

— Model 1, for each word e; select the most likely word f; (using t(e;|f))
— Model 2, same but maximize t(e;|f) P,(ji|i, E, F)

— Models 3-5, no closed form expression: start with Model 2, then use heuristics

 Many other methods exist for word alignment

— generative: train HMMs on linking probabilities, then use Viterbi decoding or
another dynamic programming method

— discriminative: structured prediction, feature functions, etc.
— still, for phrase-based translation, IBM Models 1-4 perform well



Improving word alignments:
towards phrase-based translation models

* Fora given translation direction, the IBM models can find one-to-one
alignments, multiple-to-one, one-to-zero, but never one-to-multiple

— still, for a correct alignment, we might need both
— {Paul} {was waiting} {inside} <> {Paul} {attendait} {a |’ intérieur}

e Solution: symmetrization, by running the algorithm in both directions

— consider the intersection of the two sets of alignment points, or their union,
or enrich intersection with some points of the union, etc.

* |BM Models are no longer used as translation models (to estimate P(e|f))
but only to produce (1) probabilities of word translation, and (2) word
alignments that will help learning phrase-based TMs

— lower IBM models are used as steps to learn higher ones (1 2 4)



Phrase-based translation models

The goal remains the same

— given a foreign (French) sentence f, look for the English
sentence e which maximizes P(e|f), with
argmax, P(e|f) = argmax, Py (fle) P y(e)

But take a different approach to compute Py, :
consider each sentence e and f as made of phrases

e={e,, ) € ey)and f=1{fy, o £, oy fi}

— phrases are non-empty ordered sets of contiguous words
— phrases cover entirely the sentence

Note on the word “phrase’
— originally, a linguistic notion (noun phrase, verb phrase)
— here, just a set of words, no linguistic motivation
— in French: ‘groupe de mots’, not "phrase’



Phrase-based translation probability

Pulfle) =11, ,, P(f;|e;) - d(sTART(f) — END(f_;) — 1)
P(f;| e;) is the probability that e; is translated into f;

d is a “distance-based reordering model”

START(f;) is the position of the first word of phrase f,
END(f;) is the position of the last word of phrase f,

* e.g,, if phrases e;; and e; are translated in sequence by phrases
fi_; and f, then sTarT(f,) = END(f_,)+1, and we have d(0)

 asimple and efficient function: d(x) = a!*! (adjust a if needed)



1.

2.

3.

4.

How do we estimate P(f] e)
i.e. the probabilities of phrase translations?

Consider aligned sentence pairs

(can be computed, e.g. with the Gale and Church algorithm)

Perform word alignment for each pair
— e.g. with the IBM Models

For each sentence pair, extract all phrase pairs
that are “consistent” with the word alignment

— possibly with some filtering, e.g. by length

Estimate P from counts of phrase pairs



Phrases consistent with alignment points

Some phrases

consistent with //:‘>

un

livre

Paul

the alignment

Tom

donné

Tom

gave

Paul

book

And some
others...
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Formal definitions

* Definition of “consistent with an alignment”

— a phrase pair (f, e) is consistent with an alignment A iff

* all words f; from f that have alighment points have them
with words in e (not outside e): Ve;ee, (e, f)eA = fief

* and vice-versa
* and the pair includes at least one alignment point

* Definition of counts
— extract all phrase pairs from the corpus
— how many times each pair was extracted? count(e, f)
— then estimate: P(f|e) = count(e, f) / Zf,- count(e, f)



Remarks

* Number of extracted phrases: quadratic in the number of

words, for each sentence pair
. |e|=|f| and “correct” alignments
: unaligned words generate many more phrases

— advantage: a lot of phrases to choose from
— disadvantage: large memory/disk requirements
— solution: remove long phrases and/or those seen only once

 Comparison of phrase-based and IBM models
— phrase-based have simpler formulation

— but they require word alignments

— so IBM models (or others) are still needed to find
the Viterbi alignment for each sentence pair



Towards log-linear “translation models”

* Translate f = find e which maximizes the product of three terms
— probabilities of inverse phrase translations P, .(f|e;)
— reordering model for each phrase d(START(f) — END(f._;) — 1)
— language model for each word P, (e,|ey,..., €,.1)

 Terms can be weighted: no longer Bayesian, but more efficient
— more components can be added + weights can be tuned

* SO, now we maximize
L1y vy (Pn(£i] €Y4m - d(START(£)—END(f,_y)—1)Aem )'Hk=1..|e| Pim (€rl€1)..s €4 q)Mm

which can be expressed as exp(z Ahe)) using h(...) = logP(...)

* Translate f = find e (vector of features) that maximizes
a weighted sum of feature functions (trained separately)



Extensions to the model

e Additional useful factors — determined empirically
1. Direct translation probabilities (use both e|f and f|e)

2. Lexical weighting of phrase pairs

* re-estimate likelihood of a pair based on the translation
probabilities of the words that compose it

* because rare phrases might get high P, .(f:| e;) scores

3. Word penalty: multiply by w for each word
* w < 1 favors shorter translations, w>1 favors longer ones
* tune the value of w

4. Phrase penalty: p factor, similar to w
 Reordering model can be improved

* Phrase-based models can be trained directly using EM
— but results are not better than the word-based approach



Conclusions

Many methods for translation modeling

We presented two principal approaches
— IBM Models and Phrase-based

We showed the importance of word alignment

Many variants and extensions exist

More complex models: syntax-based = hierarchical
— must learn tree-based translation models

Missing elements:
— LANGUAGE MODELING, or how to estimate P(e)
— DECODING, or how to search for e
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Practical work

* |nstall the Moses MT system, build a phrase-
based translation model

— Sections 1, 2, 4 (up to 4.2 included) of ‘TP-MT-
instructions’

— optionally: Section 3 to verify that Moses works

* Goal: train Moses on a domain or language
pair of your own, examine the translation
models (size and “perceived quality”): 4.2



