
Human Language Technology:
Applications to Information Access

Lesson 6: Translation Models

November 3, 2016

EPFL Doctoral Course EE-724
Andrei Popescu-Belis

Idiap Research Institute, Martigny

Generative modeling for statistical MT
(reminder)

• Noisy channel model
– generation of French sentence f considered as a

transmission of English sentence e into French

– goal: given f, what is the most likely e?
• this will actually produce a translation e of f

• Principle (using Bayes’ theorem)

– learn English language model: P(e)

– learn (reverse) translation model: P(f|e)

– decode source sentence: find* most likely e given f

*find: easier said than done!
2

 )()|(maxarg)|(maxarg ePefPfeP
EnglisheEnglishe




Translation modeling for MT

• Main question: how do we model P(e|f)?
– given a foreign (French) sentence f (which we don’t

understand) and an English translation candidate e,

– how do we compute (estimate) the probability that e is
really a translation of f ?

• Plan of the lesson
– IBM Model 1

• expectation-maximization (EM) algorithm

• quick overview of IBM Models 2-5

– phrase-based translation models

– sentence and word alignment algorithms

3

Learning a translation model

• Estimating parameters of generative model from data

– be able to estimate P(e|f) for any e, f

• P(e|f) or P(f|e) are equivalent because the method is the same

• Data = parallel corpus: pairs of source and target

(human-translated) sentences

• IBM Models 1 and 2

– IBM Model 1: alignments, EM algorithm, implementation

– IBM Models 2-5: incremental complexification

• Evaluation of TMs: perplexity
8

Alignment function: a

• Word mapping from a French sentence to an English one

– DEFINITION: a(i) is the position of the French word that is translated into the
English word which is in position i

• Example of a correct alignment

– French: il1 a2 gravi3 la4 montagne5 enneigée6 

English: he1 climbed2 the3 snowy4 mountain5

Alignment: a(1)=1, a(2)=3, a(3)=4, a(4)=6, a(5)=5

• Remarks

– not injective; not surjective; needs NULL token (0) in French for English words
that are not translations of a French word

• Another example

– French: NULL0 je1 ne2 veux3 pas4 me5 taire6 

English: I1 do2 not3 want4 to5 shut6 up7

Alignment: a(1)=1, a(2)=0, a(3)=2, a(4)=3, a(5)=0, a(6)=6, a(7)=6

9

Example of difficult word (and even
sentence) alignments (Jurafsky & Martin 1999, p. 473)

10

Learning to estimate P(e|f)

• Intuitive idea
– estimate P(e|f) using the probabilities that

a word in e gets translated into a word in f

– these probabilities cannot be computed directly
• unless we have word-aligned training data (but we don’t, for now)

• Better idea
– introduce the alignment functions as latent variables to be

estimated as well

– word translations and alignments are related:

P(e|f) = a P(e, a|f) but also P(a|e, f) = P(e, a|f) / P(e|f)
(applying the chain rule)

11

Use of the EM algorithm
(Dempster, Laird, Rubin 1977)

• Expectation maximization

– iterative method to estimate model parameters together with
latent variables which have reciprocal dependencies

– applicable when

• equations for parameters and variables cannot be solved directly

• derivative of likelihood function (of parameters) cannot be obtained

• Iterate the E and M steps

– Expectation: using current estimate of parameters, compute a
likelihood function over latent variables (and parameters)

– Maximization: re-compute that parameters so that they
maximize the likelihood that was found

• Initialization: e.g. with uniform probabilities for parameters

12

EM applied to IBM Model 1

• Reminder:

P(e|f) = a P(e, a|f) and P(a|e, f) = P(e, a|f) / P(e|f)

• We can make P(e, a|f) more explicit

– assume it depends only on word translation
probabilities P(ej|fi), noted t(.|.)  “Model 1”

– assume these are independent

– note E and F lengths in words of sentences e and f

– then: P(e, a|f) = (ε j=1..E t(ej|fa(j))) / (F + 1)E

• ε is a normalization factor
13

Making P(e|f) more explicit (E step)

P(e|f) = a P(e, a|f) =

= a(1)=0..F … a(E)=0..F P(e, a|f)

= a(1)=0..F … a(E)=0..F (ε/(F + 1)E)j=1..E t(ej|fa(j))

= (ε/(F + 1)E) a(1)=0..F … a(E)=0..F j=1..E t(ej|fa(j))

= (ε/(F + 1)E) j=1..E i=0..F t(ej|fi)

Also: P(a|e, f) = j=1..E (t(ej|fa(j)) / i=0..F t(ej|fi))
14

EM applied to IBM Model 1 (again)

• Better use the word-specific t(.|.) values for EM rather
than the full-sentence probability P(e|f)

– they can be estimated directly using counts

– they suffice to compute P(e|f) given the above formulae

– much fewer than P(e|f) values when training on large corpora

• Making the EM steps more explicit

1. Start with uniform t(ej|fi) values

a. Expectation step: compute all P(a|e, f) using all current t(.|.) values

b. Maximization step (of likelihood): update the t(.|.) values (improve
estimates) using counts and P(a|e, f) values

2. Iterate (1) and (2) - with a guarantee of convergence!
15

Estimating t(.|.) values using counts

• New notation: say we and wf are English and French words

• Define count(we, wf, e, f) as the number of times wf was

translated into we according to all alignments of e and f

weighed by their probability M step:

t(we|wf) = ((e,f)count(we, wf, e, f)) / (we (e,f)count(we, wf, e, f))

(the denominator is the normalization factor)

• Collecting counts (δ(…, …) is Kronecker’s function)  E step:

count(we, wf, e, f) = aP(a|e, f)j=1..E δ(we, ej) δ(wf, fa(j))

which are expressed in terms of t(.|.) using last line of slide 14:

= (t(we|wf) j=1..E (we, ej) i=1..F (wf, fi)) / (i=0..F t(we|fi))

16

A simple implementation
[from Koehn 2010, page 91]

initialize t(we|wf) uniformly

while <not converged>
for all we, wf do

count(we, wf)=0

total(wf)=0

end for

for1 all e, f do
for2 all we  e do

subtotal(we) = 0

for3 all wf  f do

subtotal(we) += t(we|wf)

end for3

end for2

for4 all we  e do
for5 all wf  f do

count(we, wf) += t(we|wf)/
subtotal(we)

total(wf) += t(we|wf)/
subtotal(we)

end for5

end for4

end for1

for6 all wf do
for7 all we do

t(we|wf) = count(we|wf)/
total(wf)

end for7

end for6

end while 17

When do we stop?

• Quality of a translation model: perplexity

– if s are sentences from a given corpus

log2 PP = - s log2 P(es|fs)

• Iterate until PP stops decreasing (<converge>)

• IBM Model 1

– EM guarantees that Model 1 will converge
towards a global minimum of perplexity

18

IBM Model 2

• In Model 1, alignment probabilities were factored

out from the formula for P(e, a|f) and from EM

We had: P(e, a|f) = (ε / (F + 1)E) j=1..E t(ej|fa(j)))

(the big cat  le gros chat) and

(the big cat  chat gros le) have the same probability!

• Alignment probability distribution Pa(i|j, E, F)

– probability that it is the French word in position i that

corresponds to the English word in position j

Therefore, P(e, a|f) = ε’ j=1..E t(ej|fa(j)) Pa(a(j)|j, E, F)
19

IBM Model 2 (continued)

• Equations are transformed similarly to Model 1

P(e|f) = ε j=1..E i=0..F t(ej|fi) Pa(i|j, E, F)

• Computation of (fractional) counts for word translations

count(we, wf, e, f) = j=1..Ei=1..F (t(we|wf) Pa(i|j, E, F) (we, ej) (wf, fi)

/ (k=0..F t(we|fk) Pa(k|j, E, F))

• Computation of counts for alignments

counta (i, j, e, f) = t(ej|fj) Pa(i|j, E, F) / (k=0..F t(ej|fk) Pa(k|j, E, F))

• Training algorithm similar to Model 1 + start with initial values of
t(ej|fj) obtained by some iterations of Model 1

20

IBM Models 1-3

• IBM Model 1: lexical translation

• IBM Model 2: added absolute alignment model

• IBM Model 3: added fertility and absolute distortion models

– probability that one English word generates several French ones

– insertion of NULL token with a fixed probability after each word

– probability of distortion instead of alignment Pd(j|i, E, F)

– exhaustive count collection no longer possible  sample the

alignment space to find optimum by hill climbing, from Model 2

21

IBM Models 4 and 5

• IBM Model 4: adds relative distortion model

– introduces notion of “cept” (sort of phrase)

– models distortion based on the position of a word in a cept
(e.g. initial or not), possibly also on word class (POS-based
or empirically)

• IBM Model 5: deal with a deficiency

– deficiency = alignments can have “superposed” words

– avoid spreading probability over such alignments

– less commonly used than Models 1-4

22

Using IBM Models for word alignment:
for instance in the GIZA++ tool

• Results of IBM Models after EM algorithm =

probabilities for lexical translation and alignment

• Can be used to determine the most probable word alignment for each

sentence pair (= the “Viterbi alignment”)

– Model 1, for each word ei select the most likely word fj (using t(ei|fj))

– Model 2, same but maximize t(ei|fj) Pa(j|i, E, F)

– Models 3-5, no closed form expression: start with Model 2, then use heuristics

• Many other methods exist for word alignment

– generative: train HMMs on linking probabilities, then use Viterbi decoding or
another dynamic programming method

– discriminative: structured prediction, feature functions, etc.

– still, for phrase-based translation, IBM Models 1-4 perform well

23

Improving word alignments:
towards phrase-based translation models

• For a given translation direction, the IBM models can find one-to-one
alignments, multiple-to-one, one-to-zero, but never one-to-multiple

– still, for a correct alignment, we might need both

– {Paul} {was waiting} {inside}  {Paul} {attendait} {à l ’ intérieur}

• Solution: symmetrization, by running the algorithm in both directions

– consider the intersection of the two sets of alignment points, or their union,
or enrich intersection with some points of the union, etc.

• IBM Models are no longer used as translation models (to estimate P(e|f))

but only to produce (1) probabilities of word translation, and (2) word

alignments that will help learning phrase-based TMs

– lower IBM models are used as steps to learn higher ones (1  4)

25

Phrase-based translation models

• The goal remains the same

– given a foreign (French) sentence f, look for the English
sentence e which maximizes P(e|f), with
argmaxe P(e|f) = argmaxe PTM(f|e) PLM(e)

• But take a different approach to compute PTM :
consider each sentence e and f as made of phrases

e = {e1, …, ei, …, eM) and f = {f1, …, fj, …, fN}

– phrases are non-empty ordered sets of contiguous words

– phrases cover entirely the sentence

Note on the word `phrase’
– originally, a linguistic notion (noun phrase, verb phrase)

– here, just a set of words, no linguistic motivation

– in French: `groupe de mots’, not `phrase’
26

Phrase-based translation probability

PTM(f|e) = i=1..M P(fi|ei) · d(START(fi) – END(fi–1) – 1)

P(fi|ei) is the probability that ei is translated into fi

d is a “distance-based reordering model”

START(fi) is the position of the first word of phrase fi

END(fi) is the position of the last word of phrase fi

• e.g,, if phrases ei-1 and ei are translated in sequence by phrases
fi–1 and fi, then START(fi) = END(fi–1)+1, and we have d(0)

• a simple and efficient function: d(x) = α|x| (adjust α if needed)

27

How do we estimate P(f|e)
i.e. the probabilities of phrase translations?

1. Consider aligned sentence pairs

(can be computed, e.g. with the Gale and Church algorithm)

2. Perform word alignment for each pair

– e.g. with the IBM Models

3. For each sentence pair, extract all phrase pairs

that are “consistent” with the word alignment

– possibly with some filtering, e.g. by length

4. Estimate P from counts of phrase pairs

28

Phrases consistent with alignment points

To
m

a d
o

n
n

é

u
n

liv
re

à Pa
u

l

Tom

gave

Paul

a

book

29

To
m

a d
o

n
n

é

u
n

liv
re

à Pa
u

l

Tom

gave

Paul

a

book

Some phrases
consistent with
the alignment

And some
others…

Formal definitions

• Definition of “consistent with an alignment”
– a phrase pair (f, e) is consistent with an alignment A iff

• all words fi from f that have alignment points have them
with words in e (not outside e): eie, (ei, fj)A  fjf

• and vice-versa

• and the pair includes at least one alignment point

• Definition of counts
– extract all phrase pairs from the corpus

– how many times each pair was extracted? count(e, f)

– then estimate: P(f|e) = count(e, f) / fi
count(e, fi)

30

Remarks

• Number of extracted phrases: quadratic in the number of
words, for each sentence pair
– approximation: |e|≈|f| and “correct” alignments

• note: unaligned words generate many more phrases

– advantage: a lot of phrases to choose from

– disadvantage: large memory/disk requirements

– solution: remove long phrases and/or those seen only once

• Comparison of phrase-based and IBM models
– phrase-based have simpler formulation

– but they require word alignments

– so IBM models (or others) are still needed to find
the Viterbi alignment for each sentence pair

31

Towards log-linear “translation models”

• Translate f = find e which maximizes the product of three terms

– probabilities of inverse phrase translations Ptm(fi|ei)

– reordering model for each phrase d(START(fi) – END(fi–1) – 1)

– language model for each word Plm (ek|e1,…, ek-1)

• Terms can be weighted: no longer Bayesian, but more efficient

– more components can be added + weights can be tuned

• So, now we maximize

i=1..M (Ptm(fi|ei)
λtm · d(START(fi)–END(fi–1)–1)λrm)·k=1..|e| Plm (ek|e1,…, ek-1) λlm

which can be expressed as exp( λihi(e)) using h(…) = logP(…)

• Translate f = find e (vector of features) that maximizes
a weighted sum of feature functions (trained separately)

32

Extensions to the model

• Additional useful factors – determined empirically
1. Direct translation probabilities (use both e|f and f|e)

2. Lexical weighting of phrase pairs
• re-estimate likelihood of a pair based on the translation

probabilities of the words that compose it

• because rare phrases might get high Ptm(fi|ei) scores

3. Word penalty: multiply by ω for each word
• ω < 1 favors shorter translations, ω>1 favors longer ones

• tune the value of ω

4. Phrase penalty: ρ factor, similar to ω

• Reordering model can be improved

• Phrase-based models can be trained directly using EM
– but results are not better than the word-based approach

33

Conclusions

• Many methods for translation modeling

• We presented two principal approaches
– IBM Models and Phrase-based

• We showed the importance of word alignment

• Many variants and extensions exist

• More complex models: syntax-based = hierarchical
– must learn tree-based translation models

• Missing elements:
– LANGUAGE MODELING, or how to estimate P(e)

– DECODING, or how to search for e
34

References

• Philipp Koehn, Statistical Machine Translation, Cambridge University Press, 2010
– chapters 4 and 5

• Jörg Tiedemann, Bitext Alignment, Morgan & Claypool, 2011

• P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer, “The mathematics of
statistical machine translation: parameter estimation”, Computational Linguistics,
19(2), p. 263-311, 1993
– introduced IBM Models 1-5

• Franz Josef Och and Hermann Ney, “A Systematic Comparison of Various Statistical
Alignment Models”, Computational Linguistics, 29(1), p. 19-51, 2003
– review of past state-of-the-art algorithms for word alignment

• Dempster, A.P. and Laird, N.M. and Rubin, D.B., “Maximum likelihood from
incomplete data via the EM algorithm”, Journal of the Royal Statistical Society
Series B, p. 1-38, 1977.
– introduced the EM algorithm

35

Practical work

• Install the Moses MT system, build a phrase-
based translation model
– Sections 1, 2, 4 (up to 4.2 included) of ‘TP-MT-

instructions’

– optionally: Section 3 to verify that Moses works

• Goal: train Moses on a domain or language
pair of your own, examine the translation
models (size and “perceived quality”): 4.2

36

