

Human Language Technology: Applications to Information Access

Lesson 6a: Appendix on Text Alignment at the Sentence and Word Levels

November 3, 2016

EPFL Doctoral Course EE-724 Andrei Popescu-Belis Idiap Research Institute, Martigny

Plan of the lesson

- Learning a translation model requires pairs of sentences which are translations of each other
 - to be obtained from documents and their translation by sentence alignment
- Other tasks require automatic word-level alignment in pairs of parallel sentences
 - can be derived from the process of building translation models, e.g. with IBM Models

Text alignment (1/2)

- Problem
 - start with sets of English and French documents which are translations of one another done by human translators
 - − identify pairs of translated documents
 → document alignment
 - − in such documents, identify pairs of translated sentences
 → sentence alignment
 - − in such sentences, identify links between translated words
 → word alignment
- Why is it difficult?
 - documents: naming conventions might differ
 - sentences: translators do not always translate sentence by sentence (especially long ones), and might omit sentences
 - words: translation is not word-by-word

Text alignment (2/2)

- Expected quality of automatic alignment depends on human translation quality
- Important notion for sentence alignment: 'bead'
 - group of one or more English sentences, which are exact translations of a French group
 - on EN/FR, about 90% of alignments are 1:1
 - not obvious to find because alignment mistakes propagate
 - also 1:2 or 2:1, even 3:1 or 1:3, 2:2 (mixed sentences),
 1:0 and 0:1 (omissions), etc.

Sentence alignment using length in characters (Gale and Church 1993)

- Find most likely alignment of **TE** and **TF** texts
 - sentences: $TE_{1..E} = (e_1, ..., e_i, ..., e_E)$ and $TF_{1..F} = (f_1, ..., f_f, ..., f_F)$
 - notations often used in SMT papers, F for French or foreign
- Note D(i, j) the lowest cost of alignment of $TE_{1..i}$ and $TF_{1..i}$
 - alignment is a set of tuples or beads {((e_i , ...), (f_j , ...)), ...}
 - for instance $((e_i), (f_j))$ is a 1:1 bead, $((e_i, e_{i+1}), (f_j))$ is a 2:1 bead
 - Gale and Church only consider {1:1, 0:1, 1:0, 2:1, 1:2, 2:2}
- If we can compute D(E, F) recursively, then we find:
 - the lowest costs for all D(i, j), $1 \le i \le E$ and $1 \le j \le F$
 - the best alignment by looking at how D(E, F) was computed

Recursive definition of D

$$D(i, j-1) + cost_{0:1}(\emptyset, f_j)$$

$$D(i-1, j) + cost_{1:0}(e_i, \emptyset)$$

$$D(i-1, j-1) + cost_{1:1}(e_i, f_j)$$

$$D(i-1, j-2) + cost_{1:2}(e_i, (f_{j-1}, f_j))$$

$$D(i-2, j-1) + cost_{2:1}((e_{i-1}, e_i), f_j)$$

$$D(i-2, j-2) + cost_{2:2}((e_{i-1}, e_i), (f_{j-1}, f_j))$$

- Implemented using dynamic programming

 quadratic complexity, but run only on paragraphs, so OK
- How do we estimate each cost_{X:Y}((...), (...))?
 - look at training data and consider the observed ratio of characters between aligned sentences for each X:Y

Estimating the cost of alignments

- Idea: the cost for each bead type X:Y is related to the probability of the type given the two lengths of the sentences in the bead
- Let LE be the length in characters of the English side of a bead (e_i, ...) and LF the length of the French side of it (f_i, ...)
 - how does the difference *LE-LF* compare to the average distance of correct beads?
 - e.g., French sentences have on average more words than English ones
 - average ratio μ and STD (s^2) can be estimated on aligned data
 - comparison of *LE* and *LF* using $d = (LF \mu LE)/sqrt(LF.s^2)$
- Therefore $cost_{X:Y}((...), (...)) = cost_{X:Y}(LE, LF) = -\log P(X:Y|d) =$ = $-\log P(X:Y) - \log P(d|X:Y) + \log P(d)$

- these probabilities can be estimated from training data

Results of Gale and Church (1993)

- On pairs with English, French and German
- About 4% error rate for the described method
 over 1:1 alignments, only 2% error rate
- Method to compute alignment confidence
 selected 80% of corpus with only 0.7% error rate

Sentence alignment using the lexicon

- Lexical matching
 - identify translational equivalents = anchor point candidates
 - optimize alignments between sentences based on anchors
- Kay and Röscheisen (1993)
 - start with initial anchors: first and last sentences
 - iterate
 - form an envelope of possible alignments given anchors
 - find pairs of words that occur in the partial alignments
 - find pairs of sentences which contain many such words and add them to the set of anchors
- Performance
 - after iterations, 96% correct but computationally intensive

Word alignment

- In a pair of sentences (*e*, *f*) which are translations of each other, find which word in *e* is translated into which word in *f*, and vice-versa
 - alignment point = pair of words which are translations of each other
- Defining the correct alignment is difficult even for humans
 - one-to-many, many-to-one, idioms, words with no equivalents
 - best option: define **sure** alignment points (S) and **possible** alignment points (P), with $S \subseteq P$
- Measuring the quality of an alignment A: alignment error rate
 - recall= $|A \cap S|/|S|$ and precision= $|A \cap P|/|A|$ and AER_{S,P}(A) = 1 - ($|A \cap S| + |A \cap P|$)/(|A|+|S|)
 - AER=0 if A gets all sure points and zero or more possible points

Using IBM Models for word alignment

- Results of IBM Models after EM algorithm = probabilities for lexical translation and alignment
- Can be used to determine the most probable word alignment for each sentence pair ("Viterbi alignment")
 - Model 1, for each word e_i select the word f_j that has maximal probability $t(e_i|f_j)$
 - Model 2, same but maximize $t(e_i|f_i) P_a(j|i, E, F)$
 - Models 3-5, no closed form expression
 - start with Model 2, then use some heuristics to improve it

Why is it called "Viterbi alignment"?

- Viterbi algorithm (VA)
 - proposed by Andrew Viterbi for decoding in signal processing
 - find most likely sequence of hidden states that explain an observation
 - this is called the Viterbi path
 - especially for Hidden Markov Models (HMMs)
- Automatic speech recognition
 - VA is used to find the most likely (forced) alignment between audio and words, using HMMs previously trained on transcribed audio
- Natural language processing
 - Viterbi alignment = most likely alignment, even if not found using VA
 - for word alignment in MT
 - IBM Models: no HMMs, but the most likely alignment is still called "Viterbi"
 - HMM models: can use VA or other dynamic programming techniques

Improving word alignments

- For a given translation direction, this approach can find one-to-one alignments, multiple-to-one, one-to-zero, but *never one-to-multiple*
 - still, for a correct alignment, we might need both
 - {Paul} {was waiting} {inside} ↔ {Paul} {attendait} {à l'intérieur}
- Solution: symmetrization, by running algorithm in both directions
 - consider the intersection of the two sets of alignment points, or their union, or enrich intersection with some points of the union
- Many other methods exist for *word alignment*
 - generative: train HMMs on linking probabilities, then use Viterbi decoding or another dynamic programming method
 - discriminative: structured prediction, feature functions, etc.
 - still, for phrase-based translation, IBM Models 1-4 perform well

Applications of word alignment

- Building bilingual dictionaries
- Extracting lexical semantics
- Multilingual word sense disambiguation
- Computer-assisted language learning
- Learning translation models
 - IBM models (no longer state-of-the-art)
 - powerful alignment tool: GIZA++ (Och and Ney 2000)
 - phrase-based translation models

References

- Jörg Tiedemann, *Bitext Alignment*, Morgan & Claypool, 2011
 - available online via EPFL library server
- William Gale and Kenneth Church, "A program for aligning sentences in bilingual corpora", *Computational Linguistics*, 19(1), p.75-102, 1993
 - classic method for length-based sentence alignment
- Martin Kay and Martin Röscheisen, "Text-Translation Alignment", *Computational Linguistics*, 19(1), p. 121-142, 1993
 - classic method for lexical sentence alignment
- Philipp Koehn, *Statistical Machine Translation*, Cambridge University Press, 2010, chapter 4 (especially 4.5)