
Human Language Technology:
Applications to Information Access

Lesson 6a: Appendix on Text Alignment
at the Sentence and Word Levels

November 3, 2016

EPFL Doctoral Course EE-724
Andrei Popescu-Belis

Idiap Research Institute, Martigny

Plan of the lesson

• Learning a translation model requires pairs of
sentences which are translations of each other
– to be obtained from documents and their

translation by sentence alignment

• Other tasks require automatic word-level
alignment in pairs of parallel sentences
– can be derived from the process of building

translation models, e.g. with IBM Models

2

Text alignment (1/2)
• Problem

– start with sets of English and French documents which are
translations of one another done by human translators

– identify pairs of translated documents
 document alignment

– in such documents, identify pairs of translated sentences
 sentence alignment

– in such sentences, identify links between translated words
 word alignment

• Why is it difficult?
– documents: naming conventions might differ
– sentences: translators do not always translate sentence by

sentence (especially long ones), and might omit sentences
– words: translation is not word-by-word

3

Text alignment (2/2)

• Expected quality of automatic alignment depends
on human translation quality

• Important notion for sentence alignment: ‘bead’

– group of one or more English sentences, which are
exact translations of a French group

– on EN/FR, about 90% of alignments are 1:1

• not obvious to find because alignment mistakes propagate

– also 1:2 or 2:1, even 3:1 or 1:3, 2:2 (mixed sentences),
1:0 and 0:1 (omissions), etc.

4

Sentence alignment using length in
characters (Gale and Church 1993)

• Find most likely alignment of TE and TF texts

– sentences: TE1..E = (e1, …, ei, …, eE) and TF1..F = (f1, …fj, …, fF)

– notations often used in SMT papers, F for French or foreign

• Note D(i, j) the lowest cost of alignment of TE1..i and TF1..j

– alignment is a set of tuples or beads {((ei, …), (fj, …)), …}

– for instance ((ei), (fj)) is a 1:1 bead, ((ei, ei+1), (fj)) is a 2:1 bead

• Gale and Church only consider {1:1, 0:1, 1:0, 2:1, 1:2, 2:2}

• If we can compute D(E, F) recursively, then we find:

– the lowest costs for all D(i, j), 1 ≤ i ≤ E and 1 ≤ j ≤ F

– the best alignment by looking at how D(E, F) was computed

5

Recursive definition of D

D(i, j-1) + cost0:1(Ø, fj)
D(i-1, j) + cost1:0(ei, Ø)

D(i, j) = min D(i-1, j-1) + cost1:1(ei, fj)
D(i-1, j-2) + cost1:2(ei, (fj -1, fj))
D(i-2, j-1) + cost2:1((ei-1, ei), fj)
D(i-2, j-2) + cost2:2((ei-1, ei), (fj -1, fj))

• Implemented using dynamic programming

– quadratic complexity, but run only on paragraphs, so OK

• How do we estimate each costX:Y((…), (…))?

– look at training data and consider the observed ratio of
characters between aligned sentences for each X:Y

6

Estimating the cost of alignments

• Idea: the cost for each bead type X:Y is related to the probability of
the type given the two lengths of the sentences in the bead

• Let LE be the length in characters of the English side of a bead
(ei, …) and LF the length of the French side of it (fj, …)

– how does the difference LE-LF compare to the average distance of
correct beads?

• e.g., French sentences have on average more words than English ones

– average ratio μ and STD (s2) can be estimated on aligned data

– comparison of LE and LF using d = (LF – μLE)/sqrt(LF.s2)

• Therefore costX:Y((…), (…)) = costX:Y(LE, LF) = –log P(X:Y|d) =
= – log P(X:Y) – log P(d|X:Y) + log P(d)

– these probabilities can be estimated from training data

7

Results of Gale and Church (1993)

• On pairs with English, French and German

• About 4% error rate for the described method

– over 1:1 alignments, only 2% error rate

• Method to compute alignment confidence

– selected 80% of corpus with only 0.7% error rate

8

Sentence alignment using the lexicon

• Lexical matching

– identify translational equivalents = anchor point candidates

– optimize alignments between sentences based on anchors

• Kay and Röscheisen (1993)

– start with initial anchors: first and last sentences

– iterate

• form an envelope of possible alignments given anchors

• find pairs of words that occur in the partial alignments

• find pairs of sentences which contain many such words
and add them to the set of anchors

• Performance
• after iterations, 96% correct – but computationally intensive

9

Word alignment

• In a pair of sentences (e, f) which are translations of each other, find
which word in e is translated into which word in f, and vice-versa

– alignment point = pair of words which are translations of each other

• Defining the correct alignment is difficult even for humans

– one-to-many, many-to-one, idioms, words with no equivalents

– best option: define sure alignment points (S) and possible alignment
points (P), with S P

• Measuring the quality of an alignment A: alignment error rate

– recall=|A S|/|S| and precision=|A P|/|A| and

AERS,P(A) = 1 – (|A S| + |A P|) / (|A|+|S|)

– AER=0 if A gets all sure points and zero or more possible points

10

Using IBM Models for word alignment

• Results of IBM Models after EM algorithm =

probabilities for lexical translation and alignment

• Can be used to determine the most probable word

alignment for each sentence pair (“Viterbi alignment”)

– Model 1, for each word ei select the word fj that has

maximal probability t(ei|fj)

– Model 2, same but maximize t(ei|fj) Pa(j|i, E, F)

– Models 3-5, no closed form expression

• start with Model 2, then use some heuristics to improve it

11

Why is it called “Viterbi alignment”?

• Viterbi algorithm (VA)
– proposed by Andrew Viterbi for decoding in signal processing

– find most likely sequence of hidden states that explain an observation
• this is called the Viterbi path

• especially for Hidden Markov Models (HMMs)

• Automatic speech recognition
– VA is used to find the most likely (forced) alignment between audio

and words, using HMMs previously trained on transcribed audio

• Natural language processing
– Viterbi alignment = most likely alignment, even if not found using VA

– for word alignment in MT
• IBM Models: no HMMs, but the most likely alignment is still called “Viterbi”

• HMM models: can use VA or other dynamic programming techniques

12

Improving word alignments

• For a given translation direction, this approach can find one-to-one
alignments, multiple-to-one, one-to-zero, but never one-to-multiple

– still, for a correct alignment, we might need both

– {Paul} {was waiting} {inside} {Paul} {attendait} {à l ’ intérieur}

• Solution: symmetrization, by running algorithm in both directions

– consider the intersection of the two sets of alignment points, or their
union, or enrich intersection with some points of the union

• Many other methods exist for word alignment

– generative: train HMMs on linking probabilities, then use Viterbi
decoding or another dynamic programming method

– discriminative: structured prediction, feature functions, etc.

– still, for phrase-based translation, IBM Models 1-4 perform well

13

Applications of word alignment

• Building bilingual dictionaries

• Extracting lexical semantics

• Multilingual word sense disambiguation

• Computer-assisted language learning

• Learning translation models

– IBM models (no longer state-of-the-art)

• powerful alignment tool: GIZA++ (Och and Ney 2000)

– phrase-based translation models

14

References

• Jörg Tiedemann, Bitext Alignment, Morgan & Claypool, 2011

– available online via EPFL library server

• William Gale and Kenneth Church, “A program for aligning sentences in
bilingual corpora”, Computational Linguistics, 19(1), p.75-102, 1993

– classic method for length-based sentence alignment

• Martin Kay and Martin Röscheisen, “Text-Translation Alignment”,
Computational Linguistics, 19(1), p. 121-142, 1993

– classic method for lexical sentence alignment

• Philipp Koehn, Statistical Machine Translation, Cambridge University
Press, 2010, chapter 4 (especially 4.5)

15

