Fwl|CiI30 G

RRRRRR CH INSTITUTE ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Human Language Technology:
Applications to Information Access

Lesson 7a: Language Modeling

November 10, 2016

EPFL Doctoral Course EE-724
Andrei Popescu-Belis
Idiap Research Institute, Martigny

Language modeling (LM)

* Objective
— compute the probability of any sequence of words
— or: given a word sequence, predict the most likely next word
— with:
* “most likely” given a certain use of language in a domain
* “probability”: over what space?

e Used in statistical MT, as well as ASR, OCR, spell checkers,
handwriting recognition, rule-based MT, authorship, etc.

— main use of LM: rank candidates of a process based
on the likelihood of the sequence of their words

Techniques for LM

* Any method or knowledge that improves modeling

* Traditionally: n-grams (as in this course)

— modeling a sequence in a Markovian way
and using counts to estimate probabilities

— do not capture the deep properties of
language, but appear to work well

* |mprovements:
— use more linguistic information
 syntactically-based LMs, topic-based LMs

— alternative sequence modeling
* neural network based LMs

Plan of the lesson

Definition of n-gram based LMs

Learning a language model

— counts of n-grams

— smoothing (discounting)

— interpolation and back-off
Testing a language model

— perplexity measures

— application to tasks such as MT

Practical work: use in MT system
* build and query a language model with KenLM

Markov hypothesis

* Goal of LMs: compute the probability of a sequence,
or the probability of next word
P(wy, w,, ..w,) or P(w, |w,, w,, .., w,)

The two formulations are equivalent because
P(w,|wy, ..., w,) =Plwy, ..w,)/Plwy,..w,)

 Markov chain approximation
Pw, |w, w,,.,w)=Pwl|w, ,..,wW,,)
— often m =2 (trigrams), or m = 1 (bigrams), or
even m = 0 (unigrams, no history considered) = the order of the LM
— e.g. trigrams: P(w,, w,, ... w,) =1I1,_, Plw,|w,,, w,,)

* with some conventions for the initial words: P(w, |w_;, w,) = P(w, | <s>)

Estimating n-gram probabilities

e Simplest idea: maximum likelihood estimate

— the model is built so that it maximizes the likelihood of
what is observed (“what you see is the most likely”)

e E.g., for a trigram model built from a (large) text
P(w,|w,,, w,)=countiw,,, w,,,w,)/2, countiw, ,, w, , w)

* Problems
— n-grams not appearing in the corpus get zero probability

— any string that contains them will have zero probability

* but in reality not seeing an n-gram in the corpus
does not mean it is impossible

Smoothing

Add some fictitious counts, i.e. some mass to all the
probabilities, to avoid unseen n-grams having O probability

Simplest smoothing: ‘Laplace’ or ‘add-one’

Pw,|lw,,, w,,) = (count(w,,, w, ,,w)+1)/

(2, count(w, ,, w

.1» W) + VocabularySize)

where VocabularySize is the number of possible trigrams

Actually, 1 is too much, in practice, for unseen trigrams
(especially if the number of possible 3-grams is much larger than the corpus)

— replace it with a much smaller o and adjust denominator

* o can also be estimated by looking at some held-out data

Other smoothing methods

Deleted estimation

— separately adjust counts for unigrams, bigrams, etc.,
by looking at a held-out corpus of similar size

Good-Turing

— adjust probabilities of n-grams based on the number
of occurrences of the n-grams of various orders

e same adjustment probability for n-grams of same order

Witten-Bell
Kneser-Ney (modified or not) = state of the art

Other solutions for modeling
unseen n-grams

e Back-off
— if count is zero, combine lower-order n-grams

* |nterpolation

— compute counts on training data for all orders below the
intended one

— combine language models with different orders:
'DINT (Wn | Wn-ZIWn-l) = 7\‘1 P(Wn) + 7\‘2 P(Wn | Wn-l) + 7\“3 P(Wn | Wn—ZIWn-l)
* with A ,+A,+A;= 1 (weights set by looking at held-out set)

— zero counts for an unseen trigram do not necessarily lead to
zero interpolated probability

— can be combined with smoothing

Evaluating LMs

1. Indirect: how much do they help a task? Or, which type of
LM most improves the task?

— complex assessment, depending on the task

2. Direct: perplexity measure

— given a new observed sentence, compute P ,(wy, ..., w,) :
the higher, the better!

— the cross-entropy over a sentence is defined as:

H(P,,) = -log (P y(wy, ..., w,)) / n
= - 21108 (Ppu(wi|wy, .y wiy)) /0

— the perplexity of a LM for a sentence or text is 2/"w/.
the lower, the better!

Do not confuse...

* Evaluating a LM

— given observed text (well-formed English), compare two
LMs to see which one gives lower perplexity to the text

— good LMs should show low perplexities when seeing new
but well-formed texts

* Fvaluating a sentence against an LM = querying the LM
— find the perplexity of the sentence

— between two sentences, the one with the lowest
perplexity is the most likely to be in “good English”, at least
according to the LM

References

Philipp Koehn, Statistical Machine Translation, Cambridge University
Press, 2010 — Chapter 7, “Language Modeling”

Christopher Manning and Hinrich Schiitze, Foundations of Statistical
Natural Language Processing, MIT Press, 1999 — Chapter 13, “Statistical
Inference: n-gram Models over Sparse Data”

Daniel Jurafsky and James H. Martin, An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, Second
Edition, Prentice-Hall, 2008 — Chapter 4, “N-grams”

Implemented LM tools for building & querying LMs
— SRILM, IRSTLM, KenLM, etc.

Possible tasks with KenLM
(better follow TP-MT-instructions)

1. Query the model

- use “mosesdecoder/bin/query” command and the “sample-models/Im/europarl.srilm.gz”
language model downloaded last time

— input: query [-s] [-n] [--help] 1Imfile [< input]

- output:
. for each word: index, n-gram, log probability
. for each sentence: log probability
. for a text (set of sentences): total perplexity
- tasks to do
. try various examples of “good” and “bad” English sentences and compare their probabilities
. try in command line or with an input file; tokenize, lowercase; compare only comparable things

2. Build a new model (in English, but, e.g., on a different domain)
— use “mosesdecoder/bin/Implz”
— documentation at https://kheafield.com/code/kenlm/estimation/

- needs tokenized and truecased (or lowercased) data, see Moses manual
. idea: re-use the English side of the parallel corpus from previous TP

— if large, the model can be binarized with “mosesdecoder/bin/build_binary”
— task: build a new model (e.g. to be used with your Moses MT system)

3. Compare perplexities of various texts against the two LMs
— send to APB by email some meaningful comparisons and observations

13

https://kheafield.com/code/kenlm/estimation/

