
Human Language Technology:
Applications to Information Access

Lesson 7a: Language Modeling

November 10, 2016

EPFL Doctoral Course EE-724
Andrei Popescu-Belis

Idiap Research Institute, Martigny

Language modeling (LM)

• Objective

– compute the probability of any sequence of words

– or: given a word sequence, predict the most likely next word

– with:

• “most likely” given a certain use of language in a domain

• “probability”: over what space?

• Used in statistical MT, as well as ASR, OCR, spell checkers,
handwriting recognition, rule-based MT, authorship, etc.

– main use of LM: rank candidates of a process based
on the likelihood of the sequence of their words

2

Techniques for LM

• Any method or knowledge that improves modeling

• Traditionally: n-grams (as in this course)
– modeling a sequence in a Markovian way

and using counts to estimate probabilities

– do not capture the deep properties of
language, but appear to work well

• Improvements:
– use more linguistic information

• syntactically-based LMs, topic-based LMs

– alternative sequence modeling
• neural network based LMs

3

Plan of the lesson

• Definition of n-gram based LMs

• Learning a language model
– counts of n-grams

– smoothing (discounting)

– interpolation and back-off

• Testing a language model
– perplexity measures

– application to tasks such as MT

• Practical work: use in MT system
• build and query a language model with KenLM

4

Markov hypothesis

• Goal of LMs: compute the probability of a sequence,

or the probability of next word

P(w1, w2, … wn) or P(wn|w1, w2, …, wn-1)

The two formulations are equivalent because

P(wn|w1, …, wn-1) = P(w1, … wn) / P(w1, … wn-1)

• Markov chain approximation

P(wn|w1, w2, …, wn-1) ≈ P(wn|wn-m, …, wn-1)

– often m = 2 (trigrams), or m = 1 (bigrams), or

even m = 0 (unigrams, no history considered) = the order of the LM

– e.g. trigrams: P(w1, w2, … wn) ≈ k=1..n P(wk|wk-2, wk-1)

• with some conventions for the initial words: P(w1|w-1, w0) = P(w1|<s>)

5

Estimating n-gram probabilities

• Simplest idea: maximum likelihood estimate
– the model is built so that it maximizes the likelihood of

what is observed (“what you see is the most likely”)

• E.g., for a trigram model built from a (large) text
P(wn|wn-2, wn-1) = count(wn-2, wn-1, wn) / w count(wn-2, wn-1, w)

• Problems
– n-grams not appearing in the corpus get zero probability

– any string that contains them will have zero probability
• but in reality not seeing an n-gram in the corpus

does not mean it is impossible

6

Smoothing

• Add some fictitious counts, i.e. some mass to all the

probabilities, to avoid unseen n-grams having 0 probability

• Simplest smoothing: ‘Laplace’ or ‘add-one’

P(wn|wn-2, wn-1) = (count(wn-2, wn-1, wn) + 1) /

(w count(wn-2, wn-1, w) + VocabularySize)

where VocabularySize is the number of possible trigrams

• Actually, 1 is too much, in practice, for unseen trigrams
(especially if the number of possible 3-grams is much larger than the corpus)

– replace it with a much smaller and adjust denominator

• can also be estimated by looking at some held-out data
7

Other smoothing methods

• Deleted estimation
– separately adjust counts for unigrams, bigrams, etc.,

by looking at a held-out corpus of similar size

• Good-Turing
– adjust probabilities of n-grams based on the number

of occurrences of the n-grams of various orders
• same adjustment probability for n-grams of same order

• Witten-Bell

• Kneser-Ney (modified or not) = state of the art

8

Other solutions for modeling
unseen n-grams

• Back-off
– if count is zero, combine lower-order n-grams

• Interpolation
– compute counts on training data for all orders below the

intended one

– combine language models with different orders:

PINT (wn|wn-2,wn-1) = 1 P(wn) + 2 P(wn|wn-1) + 3 P(wn|wn-2,wn-1)

• with 1+2+3= 1 (weights set by looking at held-out set)

– zero counts for an unseen trigram do not necessarily lead to
zero interpolated probability

– can be combined with smoothing
9

Evaluating LMs

1. Indirect: how much do they help a task? Or, which type of
LM most improves the task?

– complex assessment, depending on the task

2. Direct: perplexity measure

– given a new observed sentence, compute PLM(w1, …, wn) :
the higher, the better!

– the cross-entropy over a sentence is defined as:

H(PLM) = - log (PLM(w1, …, wn)) / n
= - i=1..n log (PLM(wi|w1, …, wi-1)) / n

– the perplexity of a LM for a sentence or text is 2H(PLM) :

the lower, the better!
10

Do not confuse…

• Evaluating a LM

– given observed text (well-formed English), compare two
LMs to see which one gives lower perplexity to the text

– good LMs should show low perplexities when seeing new
but well-formed texts

• Evaluating a sentence against an LM = querying the LM

– find the perplexity of the sentence

– between two sentences, the one with the lowest
perplexity is the most likely to be in “good English”, at least
according to the LM

11

References

• Philipp Koehn, Statistical Machine Translation, Cambridge University
Press, 2010 – Chapter 7, “Language Modeling”

• Christopher Manning and Hinrich Schütze, Foundations of Statistical
Natural Language Processing, MIT Press, 1999 – Chapter 13, “Statistical
Inference: n-gram Models over Sparse Data”

• Daniel Jurafsky and James H. Martin, An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, Second
Edition, Prentice-Hall, 2008 – Chapter 4, “N-grams”

• Implemented LM tools for building & querying LMs

– SRILM, IRSTLM, KenLM, etc.

12

Possible tasks with KenLM
(better follow TP-MT-instructions)

1. Query the model
– use “mosesdecoder/bin/query” command and the “sample-models/lm/europarl.srilm.gz”

language model downloaded last time

– input: query [-s] [-n] [--help] lmfile [< input]

– output:
• for each word: index, n-gram, log probability

• for each sentence: log probability

• for a text (set of sentences): total perplexity

– tasks to do
• try various examples of “good” and “bad” English sentences and compare their probabilities

• try in command line or with an input file; tokenize, lowercase; compare only comparable things

2. Build a new model (in English, but, e.g., on a different domain)
– use “mosesdecoder/bin/lmplz”

– documentation at https://kheafield.com/code/kenlm/estimation/

– needs tokenized and truecased (or lowercased) data, see Moses manual
• idea: re-use the English side of the parallel corpus from previous TP

– if large, the model can be binarized with “mosesdecoder/bin/build_binary”

– task: build a new model (e.g. to be used with your Moses MT system)

3. Compare perplexities of various texts against the two LMs
– send to APB by email some meaningful comparisons and observations

13

https://kheafield.com/code/kenlm/estimation/

