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Language modeling (LM)

* Objective
— compute the probability of any sequence of words
— or: given a word sequence, predict the most likely next word
— with:
* “most likely” given a certain use of language in a domain
* “probability”: over what space?

e Used in statistical MT, as well as ASR, OCR, spell checkers,
handwriting recognition, rule-based MT, authorship, etc.

— main use of LM: rank candidates of a process based
on the likelihood of the sequence of their words



Techniques for LM

* Any method or knowledge that improves modeling

* Traditionally: n-grams (as in this course)

— modeling a sequence in a Markovian way
and using counts to estimate probabilities

— do not capture the deep properties of
language, but appear to work well

* |mprovements:
— use more linguistic information
 syntactically-based LMs, topic-based LMs

— alternative sequence modeling
* neural network based LMs



Plan of the lesson

Definition of n-gram based LMs

Learning a language model

— counts of n-grams

— smoothing (discounting)

— interpolation and back-off
Testing a language model

— perplexity measures

— application to tasks such as MT

Practical work: use in MT system
* build and query a language model with KenLM



Markov hypothesis

* Goal of LMs: compute the probability of a sequence,
or the probability of next word
P(wy, w,, ..w,) or P(w, |w,, w,, .., w, )

The two formulations are equivalent because
P(w,|wy, ..., w, ) =Plwy, ..w,)/Plwy,..w, )

 Markov chain approximation
Pw, |w, w,,.,w )=Pwl|w, ,..,wW,,)
— often m =2 (trigrams), or m = 1 (bigrams), or
even m = 0 (unigrams, no history considered) = the order of the LM
— e.g. trigrams: P(w,, w,, ... w,) =1I1,_,  Plw,|w,,, w,,)

* with some conventions for the initial words: P(w, |w_;, w,) = P(w, | <s>)



Estimating n-gram probabilities

e Simplest idea: maximum likelihood estimate

— the model is built so that it maximizes the likelihood of
what is observed (“what you see is the most likely”)

e E.g., for a trigram model built from a (large) text
P(w,|w,,, w,)=countiw,,, w,,,w,)/2, countiw, ,, w, , w)

* Problems
— n-grams not appearing in the corpus get zero probability

— any string that contains them will have zero probability

* but in reality not seeing an n-gram in the corpus
does not mean it is impossible



Smoothing

Add some fictitious counts, i.e. some mass to all the
probabilities, to avoid unseen n-grams having O probability

Simplest smoothing: ‘Laplace’ or ‘add-one’

Pw,|lw,,, w,,) = (count(w,,, w, ,,w)+1)/

(2, count(w, ,, w

.1» W) + VocabularySize)

where VocabularySize is the number of possible trigrams

Actually, 1 is too much, in practice, for unseen trigrams
(especially if the number of possible 3-grams is much larger than the corpus)

— replace it with a much smaller o and adjust denominator

* o can also be estimated by looking at some held-out data



Other smoothing methods

Deleted estimation

— separately adjust counts for unigrams, bigrams, etc.,
by looking at a held-out corpus of similar size

Good-Turing

— adjust probabilities of n-grams based on the number
of occurrences of the n-grams of various orders

e same adjustment probability for n-grams of same order

Witten-Bell
Kneser-Ney (modified or not) = state of the art



Other solutions for modeling
unseen n-grams

e Back-off
— if count is zero, combine lower-order n-grams

* |nterpolation

— compute counts on training data for all orders below the
intended one

— combine language models with different orders:
'DINT (Wn | Wn-ZIWn-l) = 7\‘1 P(Wn) + 7\‘2 P(Wn | Wn-l) + 7\“3 P(Wn | Wn—ZIWn-l)
* with A ,+A,+A;= 1 (weights set by looking at held-out set)

— zero counts for an unseen trigram do not necessarily lead to
zero interpolated probability

— can be combined with smoothing



Evaluating LMs

1. Indirect: how much do they help a task? Or, which type of
LM most improves the task?

— complex assessment, depending on the task

2. Direct: perplexity measure

— given a new observed sentence, compute P ,(wy, ..., w,) :
the higher, the better!

— the cross-entropy over a sentence is defined as:

H(P,,) = -log (P y(wy, ..., w,)) / n
= - 21108 (Ppu(wi|wy, .y wiy)) /0

— the perplexity of a LM for a sentence or text is 2/"w/.
the lower, the better!



Do not confuse...

* Evaluating a LM

— given observed text (well-formed English), compare two
LMs to see which one gives lower perplexity to the text

— good LMs should show low perplexities when seeing new
but well-formed texts

* Fvaluating a sentence against an LM = querying the LM
— find the perplexity of the sentence

— between two sentences, the one with the lowest
perplexity is the most likely to be in “good English”, at least
according to the LM
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Possible tasks with KenLM
(better follow TP-MT-instructions)

1. Query the model

- use “mosesdecoder/bin/query” command and the “sample-models/Im/europarl.srilm.gz”
language model downloaded last time

— input: query [-s] [-n] [--help] 1Imfile [< input]

- output:
. for each word: index, n-gram, log probability
. for each sentence: log probability
. for a text (set of sentences): total perplexity
- tasks to do
. try various examples of “good” and “bad” English sentences and compare their probabilities
. try in command line or with an input file; tokenize, lowercase; compare only comparable things

2. Build a new model (in English, but, e.g., on a different domain)
— use “mosesdecoder/bin/Implz”
— documentation at https://kheafield.com/code/kenlm/estimation/

- needs tokenized and truecased (or lowercased) data, see Moses manual
. idea: re-use the English side of the parallel corpus from previous TP

— if large, the model can be binarized with “mosesdecoder/bin/build_binary”
— task: build a new model (e.g. to be used with your Moses MT system)

3. Compare perplexities of various texts against the two LMs
— send to APB by email some meaningful comparisons and observations
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