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Language modeling (LM)

• Objective

– compute the probability of any sequence of words

– or: given a word sequence, predict the most likely next word

– with:

• “most likely” given a certain use of language in a domain

• “probability”: over what space?

• Used in statistical MT, as well as ASR, OCR, spell checkers, 
handwriting recognition, rule-based MT, authorship, etc.

– main use of LM: rank candidates of a process based 
on the likelihood of the sequence of their words
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Techniques for LM

• Any method or knowledge that improves modeling

• Traditionally: n-grams (as in this course)
– modeling a sequence in a Markovian way

and using counts to estimate probabilities

– do not capture the deep properties of 
language, but appear to work well

• Improvements:
– use more linguistic information

• syntactically-based LMs, topic-based LMs

– alternative sequence modeling
• neural network based LMs
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Plan of the lesson

• Definition of n-gram based LMs

• Learning a language model
– counts of n-grams

– smoothing (discounting)

– interpolation and back-off

• Testing a language model
– perplexity measures

– application to tasks such as MT

• Practical work: use in MT system
• build and query a language model with KenLM
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Markov hypothesis

• Goal of LMs: compute the probability of a sequence, 

or the probability of next word

P(w1, w2, … wn) or P(wn|w1, w2, …, wn-1)

The two formulations are equivalent because

P(wn|w1, …, wn-1) = P(w1, … wn) / P(w1, … wn-1) 

• Markov chain approximation

P(wn|w1, w2, …, wn-1) ≈ P(wn|wn-m, …, wn-1)

– often m = 2 (trigrams), or m = 1 (bigrams), or 

even m = 0 (unigrams, no history considered) = the order of the LM

– e.g. trigrams: P(w1, w2, … wn) ≈ k=1..n P(wk|wk-2, wk-1)

• with some conventions for the initial words: P(w1|w-1, w0) = P(w1|<s>)
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Estimating n-gram probabilities

• Simplest idea: maximum likelihood estimate
– the model is built so that it maximizes the likelihood of 

what is observed (“what you see is the most likely”)

• E.g., for a trigram model built from a (large) text
P(wn|wn-2, wn-1) = count(wn-2, wn-1, wn) / w count(wn-2, wn-1, w)

• Problems
– n-grams not appearing in the corpus get zero probability

– any string that contains them will have zero probability
• but in reality not seeing an n-gram in the corpus 

does not mean it is impossible
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Smoothing

• Add some fictitious counts, i.e. some mass to all the 

probabilities, to avoid unseen n-grams having 0 probability

• Simplest smoothing: ‘Laplace’ or ‘add-one’

P(wn|wn-2, wn-1)  =   (count(wn-2, wn-1, wn) + 1) / 

(w count(wn-2, wn-1, w) + VocabularySize)

where VocabularySize is the number of possible trigrams

• Actually, 1 is too much, in practice, for unseen trigrams
(especially if the number of possible 3-grams is much larger than the corpus)

– replace it with a much smaller  and adjust denominator

•  can also be estimated by looking at some held-out data
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Other smoothing methods

• Deleted estimation
– separately adjust counts for unigrams, bigrams, etc., 

by looking at a held-out corpus of similar size

• Good-Turing
– adjust probabilities of n-grams based on the number 

of occurrences of the n-grams of various orders
• same adjustment probability for n-grams of same order

• Witten-Bell 

• Kneser-Ney (modified or not) = state of the art
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Other solutions for modeling 
unseen n-grams

• Back-off
– if count is zero, combine lower-order n-grams

• Interpolation
– compute counts on training data for all orders below the 

intended one

– combine language models with different orders:

PINT (wn|wn-2,wn-1) = 1 P(wn) + 2 P(wn|wn-1) + 3 P(wn|wn-2,wn-1)

• with 1+2+3= 1 (weights set by looking at held-out set)

– zero counts for an unseen trigram do not necessarily lead to 
zero interpolated probability

– can be combined with smoothing
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Evaluating LMs

1. Indirect: how much do they help a task?  Or, which type of 
LM most improves the task?

– complex assessment, depending on the task

2. Direct: perplexity measure

– given a new observed sentence, compute PLM(w1, …, wn) : 
the higher, the better!

– the cross-entropy over a sentence is defined as: 

H(PLM) =  - log (PLM(w1, …, wn)) / n
=  - i=1..n log (PLM(wi|w1, …, wi-1)) / n

– the perplexity of a LM for a sentence or text is 2H(PLM) :

the lower, the better!
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Do not confuse…

• Evaluating a LM

– given observed text (well-formed English), compare two 
LMs to see which one gives lower perplexity to the text

– good LMs should show low perplexities when seeing new 
but well-formed texts

• Evaluating a sentence against an LM = querying the LM

– find the perplexity of the sentence

– between two sentences, the one with the lowest 
perplexity is the most likely to be in “good English”, at least 
according to the LM
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Possible tasks with KenLM
(better follow TP-MT-instructions)

1. Query the model
– use “mosesdecoder/bin/query” command and the “sample-models/lm/europarl.srilm.gz” 

language model downloaded last time 

– input: query [-s] [-n] [--help] lmfile [< input]

– output:
• for each word: index, n-gram, log probability

• for each sentence: log probability

• for a text (set of sentences): total perplexity

– tasks to do
• try various examples of “good” and “bad” English sentences and compare their probabilities

• try in command line or with an input file; tokenize, lowercase; compare only comparable things

2. Build a new model (in English, but, e.g., on a different domain)
– use “mosesdecoder/bin/lmplz” 

– documentation at https://kheafield.com/code/kenlm/estimation/

– needs tokenized and truecased (or lowercased) data, see Moses manual
• idea: re-use the English side of the parallel corpus from previous TP

– if large, the model can be binarized with “mosesdecoder/bin/build_binary”

– task: build a new model (e.g. to be used with your Moses MT system)

3. Compare perplexities of various texts against the two LMs
– send to APB by email some meaningful comparisons and observations
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