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Plan of the lesson

The problem of evaluating MT
— practical exercise

Metrics of MT output quality
— metrics applied by human judges
— automatic metrics

A user-oriented view of MT evaluation
— a multitude of quality aspects & FEMTI

Applications of MT
— main types of use & examples



Examples of online MT output:
which one is better?

Source sentence
Les résultats d'études récentes le démontrent clairement : plus la prévention
commence t6t, plus elle est efficace.

Systran Pure Neural MT (NMT, on Nov. 16, 2016)
The results of recent studies clearly demonstrate this: the more prevention starts
early, the more effective it is.

Google Translate (PBSMT?, on Nov. 16, 2016)
The results of recent studies clearly demonstrate this: the earlier the prevention
begins, the more effective it is.

Systran box (direct)
The results of recent studies show it clearly: the more the prevention starts early,
the more it is effective.

Metal / L&H T1 / Comprendium (transfer)
The results of recent studies demonstrate it clearly: the earlier the prevention
begins, the more efficient it|she is.



What does “better” mean?

 Hands-on exercise: rate four FR/EN translations

* look at the human translation if you don’t understand French

1. Intuitive approach: “feeling of translation quality”
2. Analytical approach: estimate sentence by sentence

* translation quality
e fluency in English
 effort required for correction

* Synthesis of observed results

— is there a general agreement among us on ranking?



* Like you, we are convinced that the
prevention of dependence begins at home,
through the relationship between adults and
children. This is done through reinforcing the
child's self-esteem.

* The findings of recent studies clearly show
that the earlier prevention starts, the more
efficient it will be.

* You do not necessarily need to be an expert in
drug dependence to talk about this issue with
your children.



Evaluation of MT by human judges (1)

* Fluency

— is the sentence acceptable (well-formed) in the target language?
* j.e.is it good French, English, etc?
* rated e.g. on a 5-point scale

— monolingual judges are sufficient, no reference needed
 Adequacy

— does the translated sentence convey the same meaning as the
source sentence? (e.g. on a 5-point scale)

— requires bilingual judges or a reference translation

 |nformativeness

— is it possible to answer a set of pre-defined questions using the
translation, with the same accuracy as using the source or a
reference translation?



Evaluation of MT by human judges (2)

* Reading time
— people read more quickly a well-formed text
* Cloze test

— ask a human to restore missing words from MT
output: easier if the text is well-formed
* Post-editing time / HTER
— time required to turn MT into a good translation

— HTER: human-targeted translation error rate

* how many editing operations are required for a human to
change MT output into an acceptable translation (not
necessarily the reference one)



A quick-and-dirty method

(and an old joke)

Compare a sentence and its retroversion (back translation)
— only if systems are available for both translation directions
Anecdotal example of the 1960s
— EN: “The spirit is willing but the flesh is weak.”

- translate into X (e.g. Russian) = then back into English =
EN’: “The vodka is strong and the meat is rotten.”

Advantage
— easier to compare EN/EN than EN/RU, e.g. edit distance
Important idea: monolingual comparison can be automated

— a candidate translation vs. a reference translation




Automatic metrics for
MT evaluation



Principles of automatic metrics

Compute a similarity score between a candidate translation
and one or more reference translations

— references: done by human experts, e.g. professional translators
* note that human translations may also vary in quality...

— several references: account for variability of good translations

Typically: Average .., , (Sim(Ref, Cand)) with1<k<4
— where Sim is a similarity metric between sentences

— Sim can use a variety of properties: string distance, word
precision/recall, syntactic similarity, semantic distance, etc.

Criterion for validating automatic metrics: automatic scores
must correlate with human ones on test data



The BLEU metric

(BiLingual Evaluation Understudy)

Proposed by K. Papineni et al. (2001) (IBM for NIST)

— see ‘mteval’ at http://www.itl.nist.gov/iad/mig/tools/

— also included with Moses: scripts/generic/multi-bleu.perl
Principle

— compare n-gram overlap between candidate and references

— originally proposed with 4 references, but often used with one

— mean of n-gram precisions (e.g. n<4) X brevity penalty

Validation
— shown to correlate well with human adequacy and fluency

Variant proposed by NIST (G. Doddington 2002)

— considers information gain of each n-gram over (n-1)-grams
11


http://www.itl.nist.gov/iad/mig/tools/

Formula for the BLEU metric
(can be applied at sentence or corpus level)

N
BLEU=BP-exp(anlogpn)

n=1

/ Z Zcountin_ref,bound (ngram)

Ce&{candidates} ngrameC

BP =min(1, exp(1—r/c P, =
(1, expl ) " > > count(ngram)
Ce&{candidates} hgrameC
r = length of reference translation count, e poung (*) = NUMber of n grams in
c= length of candidate translation common with reference(s), bound by

maximum number of occurrences in reference

» 2-4 reference translations (concatenated)
* n-grams from 1 to N (often N=4), weighted (often 1/N)



Other automatic metrics

METEOR

— harmonic mean of unigram precision and recall, plus stemming and synonymy
matching (if exact matching is impossible)

Weighted N-gram Metric: model legitimate translation variation
— considers tf.idf score of words to weigh their contribution to BLEU

Word error rate, minimal string edit distance etc.

Translation error rate (TER)

— minimum number of edits needed to change a hypothesis so that it exactly
matches one of the references (normalize: avg length of refs)

— insertion, deletion, substitution of words; shifting phrases = all same cost

Human-targeted TER = HTER

— ask human judges to create reference translations which are as close as
possible to a system translation (typically by editing system’s hypotheses),
then measure TER



Significance testing

Problem

— does a 0.1% BLEU increase show that a system is “really better”?
e j.e.that it will also increase BLEU on a different data set

— oris the variation due to randomness?

Solution: split the test data into several folds
— average scores over folds, compute confidence intervals
— is the improvement larger than the c.i.? (similar to t-test)
— another solution for pairwise ranking: sign test

What if we do not have enough data to split?

— generate the different folds by bootstrap resampling
» for an N-sentence data set, draw N sentences with repetition (-> multeval)

Note: tuning Moses is non-deterministc
— results with several MERT runs should be averaged for confidence



/

Cost-effective, fast

Deterministic, “objective”
* easy to reproduce

Imperfect correlation with

reference human metrics

e holds mainly for data similar
to setup data
Need several high-quality
reference translations

Mainly applicable to English
and weakly-inflected
languages

Very useful for MT
development

Comparison of automatic and human metrics

|

Human appreciation of
translation quality is the
ultimate reference

Able to detect acceptable
variations in translation

Accurate on all system types
Expensive

“Subjective”
» different judges, different scales

* ajudge might have different
appreciations depending on
what they saw before + fatigue

Still the reference, especially
for end-users, who do not
care so much about BLEU
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Trends of automatic metrics

* Finding automatic metrics = optimization problem

— apply machine learning over training data as:
{(source sentence, imperfect translation, human score)}

* |ncreasing risk of over-fitting an MT system for BLEU

— BLEU scores improve if a better language model is used,
but “real quality” does not necessarily improve

* BLEU favors statistical over rule-based systems
— ranked higher by BLEU than by human judgments

— do not apply BLEU to human translations!
* and maybe not to MT when it reaches human-like level



Some MT evaluation campaigns

DARPA 1993-1995: adequacy, fluency, informativeness
TIDES (~2000): BLEU + human judgments

CESTA (2003-2006): MT into FR, human + automatic
GALE (~2005-2009): HTER

TRANSTAC (~2006-2009): concept transfer, WER

NIST Open MT (2006, 2008, ...): continues TIDES
MADCAT: same metrics as GALE

MATR (2007, 2009, ...): competition among metrics
Workshop on MT (2006-today): BLEU + human judges



Evaluation of MT software: two views

* NLP researchers / developers

— focus on the core functionality of their system,
i.e. quality of machine translated text

* NLP users / buyers

— are sensitive to a much larger range of qualities
 core functionality (translation quality) still important

 plus: speed, translation of technical terms, adaptability (e.g.
facility to update dictionaries), user-friendliness, ...

=» indicators of quality depend on the intended use

* See: Ken Church & Ed Hovy, “Good applications for crummy MT”,
Machine Translation, 8:239-258, 1993



Complete evaluation of
commercial MT software

e FEMTI: Framework for MT Evaluation in ISLE
— encyclopedia of potential qualities with metrics
— possible characteristics of the context of use
— context characteristics related to qualities

=>» FEMTI helps evaluators specify an intended
context of use and provides them with a quality
model, i.e. a weighted list of qualities (+ metrics)

* http://www.issco.unige.ch/femti
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Example 1: contextual evaluation of an
instant messaging translation system

e Task

— Communication
e Synchronous

* User
— Non specialist
— No knowledge of TL

* Type of input
— Document type

* colloquial messages
* not domain-specific

* Functionality
— readability
— fidelity
— grammar
— punctuation

* Efficiency

— speed

* Reliability

— (low) crashing frequency
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Example 2: contextual evaluation of routing
systems for multilingual patents

Task

— Assimilation
* Doc. routing

User
— Specialist
— Knowledge of TL

Type of input
— Doc. type

* patent-related doc.

— Author type

* domain specialist

* Functionality

— dCCuracy

* terminological correctness
— readability
— style

 Amount of linguistic resources
— size/type of dictionaries

* Maintainability

— Changeability

* Ease of dictionary updating
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Examples of applications

Translation on the Web (assimilation): millions+ of words/day

— Google Translate, Systran, Reverso, PROMT, Linguatech, etc.
* also as a showcase for their corporate systems

Cross-language information retrieval: IR + MT
— retrieve documents in a language different from the query
— useful if results in a foreign language can be understood

Spoken translation: ASR + MT (communication)
— e.g. for European Parliament, or on handheld devices
— also: visual translation on smartphones: OCR + MT

Aids for professional translators (dissemination)
— translation memories (e.g. Trados) are the mainstream tools
— MT followed by post-editing might be useful (e.g. at Autodesk)
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Goal of practical work

* Choose a language pair and a (small) corpus

* Train Moses on 2-3 subsets of increasing sizes
— keeping time reasonable, e.g. 0.1k-1k-10k
— tune it, if possible, on a small separate set

* Evaluate Moses on 1-2 fixed test sets
— how do BLEU scores vary with size of training set?
— how do scores vary with test set?



