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Abstract  

The accurate communication of references 
to entities is viewed here from an 
information-theoretic perspective. The 
successful transmission of references 
amounts to an similar distribution of 
coreferent expressions for the sender and 
for the receiver of a discourse, which is an 
alternative view with regard to equivalence 
classes for the coreference relation. Mutual 
information can be used to define entropy-
based recall and precision for the 
evaluation of reference resolution. This 
measure and others proposed in this 
domain are illustrated here on various texts 
to determine their relevance.  

Introduction 
Reference resolution has been a constantly 
active research topic in the past decades. 
Despite several evaluation campaigns (e.g., the 
Message Understanding Conferences), and 
many published papers, there seems to be no 
general agreement on a standard evaluation 
measure. This article proposes a measure based 
on a sound theoretical base, namely 
information theory. 
After an overview of the problem, we will 
introduce our information-theoretic model and 
compare it with others. We then define our 
measure based on mutual referring information 
between the speaker and the hearer, and 
establish some theoretical properties. Finally, 
we compare our proposal with others, by 
applying it to a range of real or toy examples. 

1 Aspects of reference in discourse 
Specific fragments of utterances in discourse 
are devoted to a particular function: they evoke 
entities, functioning thus as referring 
expressions (henceforth, REs). We call 
discourse entities (henceforth, DEs) the 

conceptual structures that REs in a discourse 
refer to, following, e.g., (Cristea, Postolache, 
Dima and Barbu 2002, Grosz, Joshi and 
Weinstein 1995). Discourse entities correspond 
generally to physical or mental objects, such as 
persons, things, ideas, but also to “reified” 
events, relations or properties. 
The relation between REs and DEs is best 
named specification, following Sidner (1983) 
among others (reference denotes the relation to 
external-world entities). Specification occurs 
in the minds of both the speaker and the hearer 
of a discourse, but in opposite directions: DE 
� RE for the speaker, vs. RE � DE for the 
hearer. 
Two important linguistic concepts related to 
reference are coreference and anaphora. 
Coreference is the relation that holds between 
two REs that specify the same DE (also called 
co-specification). Anaphora is a relation 
between an antecedent RE and an anaphoric 
RE, and holds, in its broadest sense, when the 
anaphor cannot be fully interpreted from the 
point of view of reference without making use 
of the antecedent. Anaphora can occur without 
coreference (for instance in the case of 
bridging or associative anaphora) and 
conversely, REs can be coreferent but not 
anaphoric (e.g., consecutive uses of the same 
name)—see also (van Deemter and Kibble 
2000, Vieira and Poesio 2000). Pronouns are 
often anaphoric: by virtue of their empty 
semantic structures, their interpretation almost 
always requires the use of antecedent REs. 
From the point of view of reference resolution, 
three main types of relations must thus be 
distinguished: 

• identity coreference: REs that co-specify; 
• non-identity coreference: this is a 

referring relation between two DEs, for 
instance part/whole, person/function, 
variable/value, etc. 

• anaphora: asymmetric relation between 
the anaphor and antecedent (with identity 
coreference or with non-identity one). 



In what follows, we will be concerned with 
identity coreference between REs, grouped 
therefore into DEs. 

2 Reference communication: a model 
In this section we introduce a conception of 
reference communication between individuals 
inspired from information theory. Therefore, 
we introduce a speaker (possibly the author of 
a text) who produces an utterance or linguistic 
message and addresses it to a hearer (possibly 
the reader of a text). 

2.1 Referring acts 
The notion of referring act supposes that: 
1. For each utterance, the sender has in mind 

or activates one or several DEs (and one or 
more properties that concern the DEs). 

2. For each DE that the speaker activates in 
their mind, a fragment of the utterance, 
specifically related to the activation of that 
DE, is the RE that specifies the DE. 

3. Upon reception, each RE activates one of 
the receiver’s DEs, which may be an 
existing DE or created on the spot. 

It is thus necessary that the REs be understood 
as such and that the receiver activate a DE 
upon reception. Significantly, activating a DE 
for a phrase that did not intend to activate one, 
or failing to activate a DE where a DE should 
have been activated is not misunderstanding 
reference, it is not referring at all. 

2.2 Felicitous referring acts 
Intuitively, one would be tempted to say that a 
referring act was felicitous, or that a reference 
was understood, if the receiver activates the 
“same” DE as the sender. Unfortunately, this 
position is difficult to defend, since DEs 
belonging to different minds cannot be easily 
compared. Therefore, finding out whether a 
referring act has been felicitous (i.e., 
evaluating reference understanding) is 
possible only by checking that subsequent 
referring acts activating the same speaker-DE 
also activate the same hearer-DE, that is, in 
terms of correlations. So, evaluation must 
essentially be performed on sets of REs, not on 
individual referring acts. 

2.3 Infelicitous referring acts: r-errors 
and p-errors 
Suppose that after a first referring act, the 
sender produces a second one, which may 
activate either the same DE, or another one. 
The hearer also activates a DE, either the first 
one, or another one. There are thus four 
possibilities, two of which are incorrect. 
In Figure 1–2a, the sender re-activates the 
same DE, while the receiver activates another 
one instead of activating the same one (hence: 
“the receiver wrongly believes that the sender 
refers to another object”). So, this r-error 
introduces a rupture in the structure of DEs; it 
may also be viewed as a “missing link” 
between two referring acts or two REs. 
In Figure 1–2b, the sender activates a different 
DE on the second referring act, while the 
receiver re-activates the previous one, instead 
of switching to another one (hence: “the 
receiver wrongly believes that the sender refers 
to the same object”). So, this p-error groups 
together two referring expressions that should 
not be associated. It may also be viewed as a 
“wrong link” between two referring acts. Note 
that a referring act may generate both types of 
errors simultaneously, provided that at least 
two referring acts have preceded it. 

3 Formal prerequisites to the 
evaluation of coreference resolution 

3.1 Coreference resolution by a 
computer program 
Following the definitions given above, a 
coreference resolution program constructs all 
the coreference links between REs, whether 
they are anaphoric or not—most approaches 
focus only on the identity coreference. The 
transitive closure of all the links generates the 
RE sets from which the DEs can be abstracted. 
The goal of such systems is to construct 
directly the sets of coreferent REs in narrative 
texts, regardless of their anaphoric relations. 
Of course, these relations play a central role in 
the identification of coreference relations. 
Anaphora resolution programs, focusing on the 
asymmetric links between anaphors and their 
antecedents, do not belong in the previous 
frame (Barbu and Mitkov 2001, Mitkov 1998). 
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Figure 1. Two types of reference understanding errors: (1) initial referring act, (2a,b) two 
possible subsequent referring acts – (2a) r-error, (2b) p-error with respect to (1) 

 

3.2 The “equivalence class” view 

3.2.1 Intuitive approach 
We consider that the set of REs is the same for 
the sender and the receiver, in order to evaluate 
specifically reference resolution, as explained 
above. A program would thus first need a list 
of correct REs. Then, we consider the 
distributions of REs into sets of co-specifying 
REs (activating the same DE), for the speaker 
(key) and for the hearer (response). 
These sets are equivalence classes for the 
coreference relation, either for the sender or for 
the receiver (Vilain, Burger, Aberdeen, 
Connolly and Hirschman 1995). Indeed, an RE 
belongs to one and only one class (possibly a 
singleton class) and the classes form a 
partition of the RE set (key partition vs. 
response partition). So, if co-specification links 
between REs are used, the sets must be built 
using the transitive closure of the sets of links.  
Measuring the proximity between the key and 
response partitions of the same RE set is not a 
trivial mathematical problem. Set theory 
defines only the notion of a partition being 
more (or less) fine-grained than another one. 
We will show that information theory provides 
indirect results on the comparison of partitions. 

3.2.2 Definitions 
Let E be the set of all REs, and let PK be the 
key partition, that is, a set of subsets of E, 
PK = {K1 , K2 , …, Kn }, that are non empty, do 
not overlap, and recover E (equivalence 
classes)—see an example in Figure 2 below. 

Likewise, let the response partition be 
PR = {R1 , R2 , …, Rm }. 
The perfect answer corresponds to PR = PK , so 
that for each Ki there exists Rj such as Rj = Ki . 
When this is not the case, it is useful to 
consider all the response classes that contain 
fragments of a given key class K. The 
projection of K on PR is first defined as the set 
of fragments into which K is divided in the 
response partition: 
 
π(K) = {A|∃ Rj∈PR with A=K∩Rj and A≠∅}  
 
The set of response classes that contain these 
fragments is: 
 
π*(K) = {Rj | Rj ∈ PR and Rj ∩ K ≠ ∅} 
 
Conversely, we define the projection σ(R) of a 
response class R on PK and the set σ*(R) of 
key classes containing the fragments. 
Since each key class K has at least one 
projection (itself) and at most |K| (if it is 
completely fragmented), the following 
inequalities hold: 

(PROP.1) 1 ≤ |π(K)| ≤ |K| and 1 ≤ |σ(R)| ≤ |R|, 
for all K ∈ PK and R ∈ PR . 

In the example on Fig. 2, there are four key 
classes and three response classes. K1 and K2 
project onto PR as single fragments, while K3 
and K4 are both divided in two––e.g., π(K3) = 
{{6, 7, 8, 9, 10}, {11, 12}}. So, π*(K1) = 
= {R1}, π*(K2) = {R2}, π*(K3) = {R1 , R2} and 



π*(K4) = {R2 , R3}. Conversely, σ*(R1) = 
{K1 , K3}, σ*(R2) = {K2 , K3 , K4}, and 
σ*(R3) = {K4}. 
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Figure 2. Example of key and response 
classes (solid vs. dashed line), REs being 
circled numbers. Shaded areas represent 
σ*(R2), the projection of R2 onto PK. 

 

3.3 The “random variable” view 
To apply information theory, we view 
reference understanding as the constant co-
activation of the same DEs for the sender and 
the receiver. This is grounded in the model of a 
communication channel (Ash 1965, Cover and 
Thomas 1991, Shannon and Weaver 1949). 
In this model, the sender or source is a random 
variable K that may take several values, and 
the receiver is another random variable R, with 
values from another set. The “quality” of the 
communication channel––its accuracy and 
noiselessness––is measured using the statistical 
correlation of K and R. 
Here, K is the DE activated by the speaker for 
each referring act, and R is the DE activated by 
the hearer upon reception. The probability laws 
of these random variables are given by the 
partitions of the set of all referring acts into 
coreference sets; this ensures that the 
definitions given below still apply. However, 
the present model offers a specific method to 
compare partitions PK et PR. 

4  An information-theoretic measure 
of reference transmission accuracy 
The measure we propose relies on the concept 
of referring information. The use of the 
communication channel model allows us to 
define mutual referring information between 
the speaker and the hearer, and to define 
“quality” as the maximization of this quantity. 
This quantity can decrease due to loss or 

increase due to unjustified gains of referring 
information. Although based on mutual 
information (Cover and Thomas 1991), the 
measure below bears also resemblance with the 
Kullback-Leibler (1951) divergence. 

4.1 Preliminary definitions 
The average referring information emitted per 
transmission (referring act), noted H(PK), is the 
entropy of the source. The average referring 
information received is H(PR). Both are 
defined as follows (E is the set of REs): 
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The loss of information through the 
communication channel is defined as the 
conditioned entropy of the sender given the 
receiver’s value, averaged over these possible 
values: H(PK |PR). Infelicitous referring acts of 
the p-error type increase this loss. Conversely, 
H(PR |PK) measures irrelevant information 
gained through the channel (this quantity is 
less used in information theory). Infelicitous 
referring acts of the r-error type increase these 
gains. Formally H(PK |PR) is computed as: 
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and H(PR |PK) is computed as: 
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with the convention that “0·log(0) = 0”. 
Finally, mutual referring information between 
the speaker and the hearer is defined as: 
I(PK , PR) = H(PK ) – H(PK |PR). Proposition (2) 
below shows that mutual referring information 
is positive, and that all H(…) values are 
positive too. 

(PROP.2) 0 ≤ H(PR |PK) ≤ H(PR)  
0 ≤ H(PK |PR) ≤ H(PK) 



A well-known result from information theory 
(Prop. 3) is in our view the fundamental 
equation of referring information, as it reads: 
“the received referring information equals the 
information sent, minus the losses, plus the 
unjustified accruals”. This result also shows 
that mutual information is symmetric 
I(PK , PR) = I(PR , PK). 

(PROP.3) H(PR) =  
H(PK) – H(PK |PR) + H(PR |PK) 

4.2 H-recall and H-precision 
We define at this point recall and precision as 
measures of, respectively, irrelevant 
information gains (r-errors) and loss of 
information (p-errors). Since we prefer to 
normalize these values to the [0;1] interval, we 
propose the following definitions, where 
HRS/HPS are “recall/precision success”: 
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We must add that HRS = 1 when H(PR) = 0, 
and HPS = 1 when H(PK) = 0. The inequalities 
in (Prop. 2) ensure that HRS and HPS vary 
between 0 and 1. Finally, we define f-measure 
as the harmonic mean between H-recall and H-
precision (as usual). 

4.3 Properties of the H measure 
An important result from information theory 
ensures that the maximal score is reached 
when the speaker and the hearer have identical 
partitions of the RE set, and only in that case: 

(PROP.4) f-measure = 100% ⇔  
H(PR |PK) = H(PK |PR) = 0  ⇔  
PR = PK 

It is also possible to list the cases that yield a 
0% f-measure score, as in (Prop. 5). The last 
case is the non trivial one, made explicit in 
(Prop. 6) further below. 

(PROP.5) f-measure = 0 iff at least one of the 
following conditions holds:  
• H(PR) = 0 & H(PK) ≠ 0 (one 
response class, several key classes) 
• H(Pk) = 0 & H(PR) ≠ 0 (one key 

class, several response. classes) 
• H(Pk) ≠ 0 & H(PR) ≠ 0 & “PK and 
PR are independent” 

The last case corresponds to zero mutual 
referring information between the speaker and 
the hearer (statistical independence, the 
speaker understands “nothing” of the hearer’s 
references).  

(PROP.6) The following are equivalent: 
• “PK and PR are independent” 
• H(PK ) = H(PK |PR )  
• H(PR ) = H(PR |PK )  
• vectors (|K1 ∩Rj |, …, |Kn ∩Rj |), 
1 ≤ j ≤ m, are proportional   
• vectors (|Ki ∩R1 |, …, |Ki ∩Rm |), 
1 ≤ i ≤ n, are proportional  

For a given number of response classes |PR |, it 
is not always possible to arrange response REs 
so that the score reaches 0%. Of course, a 
single response class (|PR | = 1) will always get 
0% score. 

5 Comparison to other measures 
We cannot provide in this paper a detailed 
comparison of this measure to all the others 
that have been proposed for coreference or 
anaphora resolution. Given that an automatic 
evaluation measure as the H one tries to 
capture the judgment of human experts on the 
same output, there are no formal arguments 
that validate a measure. We have however 
defined elsewhere some commonsense criteria 
for the coherence of an evaluation measure, but 
we cannot list them here for lack of space. 

5.1 Evaluation measures for 
coreference resolution 
Since the first attempt by Vilain et al. (1995) to 
define an evaluation measure for coreference at 
the MUC-6 conference (MUC-6 1995), several 
other proposals have tried to analyze and 
improve existing measures. It is beyond our 
scope here to analyze each of them in detail. 
We will summarize their main stance, then 
compare the scores that they provide. We focus 
on measures for coreference resolution: the 
case of anaphora must be dealt with separately 
(Barbu and Mitkov 2001, Mitkov 2002). 
MUC measure (M) – The main contribution 
of the algorithm proposed by Vilain et al. 
(1995) is a method to count coreference links, 



which depends only on the sets of coreferent 
REs (the DEs), not on the particular links that 
constitute them. The count is indulgent as it 
computes, by definition, the minimal number 
of missing and wrong links. 
B3 measure (B) – Bagga and Baldwin (1998), 
aware of the indulgence of the MUC 
algorithm, define another recall and precision, 
per RE, then average these values to obtain 
global scores. Their scores are lower than the 
MUC scores when many REs are unduly 
grouped, but they are always well above 0%. 
κκκκ-measure (K) – Passonneau (1997) uses the 
kappa factor (Krippendorff 1980) to measure 
the agreement between two annotators of a 
given text, based on the probability of 
agreement by chance (Carletta 1996). For the 
distance between key and response, the κ-
factor is especially relevant when these are 
very close. The score is computed using MUC 
recall and precision, and though it is less 
indulgent, it also bears less information than 
the MUC couple. 
Core-DE measure (C) – The notion of core-
DE (Popescu-Belis and Robba 1998) attempted 
to grasp a program’s view (response) of each 
correct DE. For each key DE, an associated 
core-DE in the response is computed. Then, all 
the REs in the key DE that do not belong to the 
corresponding core-DE count as recall errors. 
Precision is computed symmetrically. The C-
score is lower than the MUC one for every 
response. 
Descriptive specificity measure (D) – 
Trouilleux et al. (2000) attempt to determine 
the best match between the DE’s of the 
program and the correct ones (the approach is 
similar to a version of the previous measure 
called “exclusive-core-DE”). They define an 
elaborate matching algorithm and scoring 
function. 
On the whole, recall and precision for the M-
B-C and H measures vary from 0 to 1. The K-
score varies from –1 to +1: +1 for perfect 
agreement, 0 for random agreement, –1 for 
“perfect disagreement”, i.e. for negative 
statistical correlation between the links. 
Each measure has its own advantages and 
drawbacks, one of the most frequent problems 
being “indulgence”, that is, rather high scores 
for rather poor answers, or even a minimal 
score well above zero. Most of the measures 
are too indulgent when the key has a high RE-
to-DE ratio, even a poor answer receiving then 
a decent score. None of the measures satisfies 

all our coherence criteria mentioned above. A 
sound use of these measures consists in 
comparing the quality of two responses and to 
determine the best one. Concordant variation 
of all measures between two responses is a 
sign of reliability. 

5.2 Examples 
An empirical method to judge the relevance of 
evaluation measures is to compare their scores 
on sample key/response sets, and to find out 
which measure best reflects “quality”. 

5.2.1 Synthetic keys and responses 
We first use some artificial examples to 
illustrate the measures on particular cases. 
These are also handled by our implementation 
of the measures above. The following 
examples were tested: 
 
1. The sample text in Figure 2, with 17 REs 

and the key and response from the figure. 
2. A text with ten REs and two key classes, 

K1 = {1, 2, 3, 4, 5} and K2 =  
{6, 7, 8, 9, 10}. The response is a “nothing 
was done” response, i.e., PR = {{1}, {2}, 
{3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}. 

3. Using the same text as (2), we suppose now 
that the response has all REs grouped into 
one class R1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 
hence PR = {R1}.  

4. We use now the sample text from the 
MUC-6 proceedings. There are 147 REs in 
15 key classes (singletons are not counted). 
First, we consider the “nothing was done” 
response, with |PR| = 147. 

5. Using the same text, we suppose now that 
the response groups all REs into one class, 
so that |PR| = 1. 

6. The same text contains in fact 50 pronouns, 
but only five key classes contain pronouns. 
We suppose now that the system is unable 
to understand pronouns, so it groups into 
one separate response class, but correctly 
solves the 97 other REs. So, |PR| = 15 + 1. 

 
Results of the measures are given below, with 
a three-letter code: M, B, C, or H for the name 
of the measure, R or P for recall/precision, and 
S for success. 



 
 MRS MPS BRS BPS CRS CPS HRS HPS 
1 85 79 74 49 77 50 55 37 
2 0 100 20 100 0 100 30 100 
3 100 89 100 50 100 44 100 0 
4 0 100 10 100 0 100 40 100 
5 100 90 100 19 100 31 100 0 
6 96 97 65 79 67 82 76 81 
Table 1. Recall and precision for the six 
sample texts (%) 
 

Example MUC B3 κ C H 
1 81 59 –18 61 44 
2 0 33 0 0 46 
3 94 67 0 62 0 
4 0 19 0 0 57 
5 95 33 0 47 0 
6 97 71 66 73 78 

Table 2. F-measures (in %) and kappa for the 
designed examples 
 
Example (1) obtains relatively high scores 
(except for κ) despite a confuse response. 
Examples (2) and (4) show the scores of a 
system that “performs no resolution”, whereas 
examples (3) and (5) are those of a system that 
“groups all REs”. Both strategies are extremely 
crude, but we see they sometimes receive high 
scores (of course, precision is 100% in the first 
case, and recall is 100% in the second case). 
The f-measures in examples (3) and (5) are 
quite high, especially for the MUC measure, 
which clearly proves to be too indulgent. 
Example (6) is still more realistic, and shows 
again the indulgence of some measures, in a 
case when 30% of the REs (the pronouns) are 
incorrectly resolved. 
Regarding relative indulgence, these results 
confirm that the only comparable measures are 
C and MUC, the former being less indulgent. 
The scores are also covariant, that is, increase 
or decrease simultaneously between two 
examples. For instance, (6) receives better f-
measure scores than (4) and (5), for all the 
measures. 

5.2.2 Results of our system on real texts 
We have developed a reference processing 
system, and applied to it the above measures. 
An annotation module provides the means to 
define a key partition of the RE set. Three 
narrative texts were encoded: they are quite 
long (ca. 100 pages for T3) and have important 
coreference rates (|E| / |PK|). 

 
Characteristic T1 T2 T3 
Words 2630 7405 28576 
REs (|E|) 638 686 3359 
Key DEs (|PK|) 372 216 480 
Coref. rate (|E| / |PK|) 1.72 3.18 7.00 
Noun phrase REs 510 390 1864 
Pronoun REs 102 262 1398 

Table 3. Characteristics of the trial texts 
 
Our program’s results (cf. Tables 4 and 5) may 
seem quite high when compared to programs 
from the MUC campaign, which scored in the 
60% range. In fact, there are two differences in 
evaluation: we do not evaluate RE 
identification, giving the system the correct 
REs from the start, and we use much longer 
texts with larger key classes, thus biasing the 
MUC measure towards higher scores. 
 
 MRS MPS BRS BPS CRS CPS HRS HPS 
T1 70 78 75 75 53 47 89 89 
T2 62 77 50 57 43 36 71 71 
T3 70 88 37 52 43 44 59 64 
Table 4. System's results on trial texts (in %) 
 
 MUC B3 κ C H 
T1 74 75 57 50 89 
T2 69 53 20 39 71 
T3 78 43 9 43 61 

Table 5. F-measures (in %) and κ for the 
system's results on trial texts (from Table) 
 
Despite the similar nature of the three texts, the 
scores of the program are quite variable. 
Indeed, the MUC measure, and to a lesser 
extent the C measure, are more indulgent as 
the number of REs increases (T1 vs. T2 and T2 
vs. T3), while the system’s “quality” is 
definitely constant. The B3 and H measures 
vary in the opposite direction. So, f-measures 
increase for MUC and C, and decrease for B3 
and H when comparing T2 and T3, because 
they do not have the same bias with respect to 
the number of REs. However, when applied to 
texts of similar lengths, all the measures agree 
in designating the response on T1 as better 
than the one on T2, reflecting the capacities of 
the program on those texts. 

Conclusion 
The present work has presented a measure for 
coreference resolution based on an 
information-theoretic model that provides a 
certain number of theoretical results. The main 
point has been the idea of “referring 



information”, and the way it can be lost or 
irrelevantly enriched in the process of 
communication. The resulting measure 
provides a relevant score for coreference 
resolution evaluation. 
Many refinements should be considered as 
future work: the case when speaker and hearer 
have different RE sets, the problem of non-
identity coreference (links between DEs), the 
problem of anaphora (asymmetric links 
between an RE and a DE). For lack of space, 
we could not describe in this paper our 
proposals for each of these particular 
challenges. 
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