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Abstract

This paper presents some aspects related to natural language acquisition in our
CARAMEL architecture. The CARAMEL model emphasises, at aglobal level, the importance
of both “conscious’ and “unconscious’ processes for natural language understanding, drawing
inspiration from theoretical work by Harth, Baars and especially Edelman. Three experiments
on language grounding are described: prerequisites to language for an agent in its environment;
evolution of syntactic conventions between agents; and conceptual bootstrapping for an agent
exposed to language.

1. Introduction

From our point of view, taking into account consciousness and its related aspects is of
particular interest for natural language understanding. This leads us to propose a general model
of reasoning and intelligence that should not only apply to natural language processing but also
to reasoning and learning (since from our point of view, true understanding cannot be isolated
from acquisition); this model should explain how authentic semantics, or symbol grounding,
can appear in agiven mind.

Our model is named CARAMEL — in French: Conscience, Automatismes, Réflexivité et
Apprentissage pour un Modéle de I'Esprit et du Langage, or in English: Consciousness,
Automatic processes, Reflectivity and Learning for a Model of Mind and Language (Sabah
1995, 19973, Sabah and Briffault 1993). It shows how reflectivity and distributed artificia
intelligence allow computer programs to represent their behaviour and reason about these
representations in a dynamic way.

Non-controlled processes appeared also to be necessary in this kind of program for
computer efficiency reasons as well asfor cognitive ones. Therefore, we proposed a blackboard
extension — the sketchboard (Sabah 1997b) — which uses a different kind of relation between
processes. it allows for reactive feedback loops at different levels between processes that do not
otherwise know each other.

The CARAMEL model advocates the idea that consciousness has a central role to play for
the integration of these two kinds of processes. The model draws inspiration from many
sources, the main ones being summarised below.

From Baars' (1988) “economical” conception of consciousness, and his psychological
point of view, we retain three main components:

» ablackboard as a workspace where conscious data is written;

» the hierarchy of interpretative contexts, conceived as hierarchies of goals, and the
handling of interruptions,



« the competition between severa unconscious processes, providing a model of
voluntarily control and attention.

Harth (1993) is opposed to Cartesian dualism, as well as to the more recent radica
pluralism — asillustrated by (Minsky 1985): "a million witless agents instead of one clever
homunculus'. His model accounts for the fact that mental images are not replicas of world
objects, they are combined with previous knowledge. Top-down pathways alow higher
knowledge to modify messages that come from the senses and to inject into them additional
information. This process becomes active as soon as sensorial input begins, and not at the end,
as one would assume if it were an advanced function of the brain. Therefore, there is no
homunculus scrutinising the state of the brain: the brain itself acts as an observer of its first
input levels and influences them in order to maximise the recognition; the brain analyses,
recreates and analyses again its own productions, in atruly “ creative loop” .

From Harth's theory, we took :

 theideaof feedback between unconscious processes,

» theapriori evaluations of unconscious processes; and

e consciousness acting already at theinitia processing levels rather than only at the end.

Edelman’ s conception of consciousness (Edelman 1989, 1992) is based on atheory of the
brain functions, in its turn based on atheory of their evolution and development. The core of
Edelman’ s approach is the Theory of Neuronal Group Selection, also referred to as "Neural
Darwinism". TheTNGS s based on three principles: ontogenetical selection; secondary synaptic
reinforcementsor decay; interactionsamong cerebral repertoiresby abi-directiona re-entry.

According to the TNGS, the cerebral cortex is structured in repertoires of neuronal groups
which act toward perceptive input as selective systems. As repertoires can also categorise other
repertoires activity, the perceptual input is thus categorised in a more and more abstract way.
Some repertoires are connected through reentrant pathways, enabling elementary associative
learning. The TNGS thus identifies the neurobiological functions that have allowed the
emergence and evolution of elaborated capacities of the human mind; these characteristics also
provide a ground for consciousness.

In our view, several characteristics enabling high-level faculties and, inherently,
consciousness, can be drawn from Edelman’s work:

1) neural specialisation allowing the distinction of internal signals from world signals,

2) perceptua categorisation,

3) memory as a process of continuous re-categorisation with the possibility of representing
the activation order,

4) learning, i.e., links between the categories and the essential values of the individual,

5) concept acquisition, i.e. categorisation of the brain activity itself through global maps,

6) primary consciousness, allowing to connect internal states resulting from previous
perceptual categorisations to present perceptions — what Edelman calls : the remembered
present,

7) an ordering capability which resultsin presyntax and the basis for symbols,

8) language and

9) higher order consciousness.

In the realisations described in his paper, we have been mainly inspired by:
* the definition of unconscious processes as basically producing correlations,



» the definition of semantics as correlations between concepts, sensory input and
symbols?,

» the memory model as a categorisation of processes rather that as a zone for storing
representations, and

* therole of language for symbol manipulations.

The PhD theses of Andrel Popescu-Belis and Jean-Pierre Gruselle focus on the study and
implementation of capacities which could enable a system to acquire some rudiments of
language — lexicon, syntax and semantics— through interaction with a simulated
environment. The system is viewed here as an “animat”, or simulated autonomous “living”
robot. The rest of the paper describes three aspects of our work: evolution of an “Edelmanian
animat” (8 2), emergence/acquisition of syntax for the communication code of a group of
animats (8 3), concept acquisition from exposure to language (§ 4).

2. An Adaptive Multi-Agent System Based on " Neural Darwinism"
Proposals for models of the TSGN

Several computer models of the TNGS (Reeke, et a. 1990) bring convincing justifications
to the theory. However, despite the theory's ambitions to account for higher cognitive functions
as language and consciousness, the models seem difficult to extend, as they rely heavily on
very specific architectures, using fined tuned scalar connections between simulated neurons
("integrative units"). Although the TNGS defends the idea of neuronal groups — whose
genesis has been simulated in (Reeke, et al. 1990, p. 616 - 627) — they aren’t used in the other
models.

Our first proposal for the implementation of such control architecturesisto use actors
instead of “integrative units’ (actors are very simple active objects). Conversely, numeric
synaptic inputs are replaced with symbolic messages between actors, connections with
acquaintances, gradual activation states with discrete ones. Second, we propose here an explicit
implementation of valuesor needs of our agent. Indeed, for the original models of the TNGS
(Reeke, et al. 1990), behaviour isimplicitly defined by some sensori-motor connections, used
to check the proper execution of categorisation operations. However, as Edelman himself
argued, value is a central element of cognitive functions explanation.

Description of the agent

Our simple agent or “animat” implements very basic features of an adaptive being:
positional perception of the environment, internal needs or values, and motor capacities. The
environment is linear: a segment, an infinite line, or acircle. Two areas of the environment
provide two different resources, named N and B (“nutriment” and “beverage’).

Mainly inspired by the TNGS notion of neuronal group, the control structure consists of
“actors’ or modules. Each actor monitors the patterns of a repertoire of other actors or
modules, and generates a message depending on this pattern and on its own internal state.

The visua cells of the linear retina provide atopographic representation of the environment
(cf. Figure 1). Actors from three repertoires monitor thisinput area, to detect specific features

1. The last word is here used in Newell and Simon's meaning (the basis of “physical symbol
systems”). However, our own hypothesis differs from them: we follow Edelman by saying that such system
semantics cannot be defined on fomal bases only.



(N position, B position, movement sense). Then, R-of-R actors (second order recognisers
according to Edelman) categorise combinations of messages from the first repertoires. There
are 16 R-of-Rs, corresponding to combinations of two or three messages.

H Szt E

ENVIEO BMENT | _ _ — — .
a 10 {L M 100 4\
| Vial Cells | II
Teo Feo Feo = -
CIP T ostl T osE Smse (. Motor 3

Jididned =] « Faognimers of Fecogmimers — EMptC el
Bt ero ] (R-of-F ] LIulot (1

Figure 1. The agent’s architecture

“Reentrant” protocols are implemented between interoceptive actors (InteroB, InteroN)
and R-of-Rs as well as between R-of-Rs and motor actors (MotCel). These protocols provide
the basis for adaptive learning: simultaneous activation of two actors establishes an
acquaintance link between them, which is not immutable, but subject to progressive decline.
Conversaly, activation of an actor induces activation of its acquaintances which are not active.

There is no separation between the learning and the functioning phase, as in most
biological systems. Each protocol works both ways: for learning (the MotCel — R-of-R and R-
of-R - Intero senses) and application of what was learnt (Intero —» R-of-R — MotCel). The
experimental evidence confirms the stability of these reentrant protocols;, see below and
(Popescu-Belis 1997).

Operating principle

Once created, the animat has to acquire motor control, then spot the regions where its
needs are satisfied. First, the observed coordination between perception and action (random
motor activity) leads to internal sensori-motor linkage between MotCel and R-of-R repertoires.
Further, the agent recognises the utility of N and B regions only after its needs have been
fulfilled — which needs external intervention to bring the agent on N, resp. B, for thefirst time.
Indeed, these regions behave initially only as perceptual landmarks, and are associated with the
corresponding value only after learning.

Experimental Results

Computing the activation once for all actors makes a cycle. In our experiments, the agent
getsinitially afull load of N and B. Then, instruction by external intervention is permitted up to
1000 cycles; the agent’s lifetime is recorded afterwards, until either N or B are finished. In one
set of trials, 12 instances were given the same numeric parameters and similar external
interventions; the average lifetime was 1,550,000 cycles. Six instances were stopped after



1,000,000 cycles — another one being left up to 6 million (6.106) cycles. Oscillation between N
and B is a stable behaviour, which may be atered by changes in the environment (N/B areas).

These results are very encouraging and we are currently trying to enhance the model, with
amore complex animat: acylinder shape simulated robot, with acircular one-dimension retina,
two motor wheels, pressure sensors and an olfactory gradient sensor. Current research topics
include kinaesthetic capabilities, perceptua—kinesthetic coordination and learning of motor
sequences.

3. Communicating Agents: Study of Emergent Syntax

We examine now how such agents may use a language-like communication code. One of
the limitations of natura language understanding by computers is that programs do not
generally ground semantics using perception of the real world, actions on it, and internal values.
Instead, only aformal definition of the language is given, e.g. formal syntax, formal ontology.
Our approach aims at implementing syntactic and semantic properties on Stuated agents
(previous experiment).

However, we use for the moment aformal implementation to study syntactic properties of
a communication code at the collective level, which isdynamic and non-deterministic. The
model presented here validates the idea of representing syntactic conventions using s simplified
Tree Adjoining Grammar (TAG) — see aso (Allexandre and Popescu-Belis 1998). The agents
are supposed already capable of categorising their environment, which contains geometrica
shapes with features and relational properties. Conceptual representation of situationsis given to
agentsin the form of TAG derivation trees, which are considered to be a simple representation
of meaning in TAG. TAG being lexicalised, to each concept corresponds an elementary tree;
order of the branches of these treesis subject to collective convention, as well as the overt name
of the concept.

The agents’ goal is to establish conventions for naming the concepts they perceive and for
ordering these names in the output message using a parse tree representation, or derived tree.
Thisis obtained from the derivation tree through the combination of elementary trees for each
concept. Agents randomly engage in dialogs (Figure 2) and are rewarded if the message sent
can be parsed by the receiver and matched with the observed situation or part of it. Initialy, the
agents have no words and no elementary parse trees associated to any concept, but they are
allowed to create new ones randomly. Also, when an agent tries to understand a message, it is
allowed to guess one or more words, thus enriching its knowledge.



Environment [ Situation

sphere left_of big sphere greater_than cube

Described Situation Understood Situation

biy sphere greater_than cube | | big sphere greater_than cube

Sender: Agent #5 Receiver: Agent # 1

Lexicon Lexicon

big : ga
sphere : su Sentence

greater_than : se
cube : py

hig - ga

sphere : su
greater_than : se
cube : py

| fga su se py

Dialog Success
Syntax Commiete S Syntax
rZ{comparizon) - 102 Mplele SUccess re({comparison) - 102
ohject : 0 ohject : 0
characteristic : 01 characteristic : 01

Figure 2. A sample dialogue between two agents

Convergence of the concept names and elementary parse trees among the population is
proven through alearning protocol. For instance, an average of 20,000 dialogs is necessary for
5 agents to establish conventions, when learning is incremental, i.e., the situations' complexity
is progressively increased. Other situations have been tested: inserting a new agent, allowing
partial descriptions (these converge too), non-incremental learning, population mixing (these
fail to converge in areasonable period).

Further work concerns better command of the learning process, in order to direct
communication conventions towards natural (French) ones, using one or more instructor agents
to provide sample sentences.

4. Building a network of semantic proximity from simulations of verbal experiences

Instead of giving the agents symbols for concepts, we have studied how meaning can be
learned from perceptual experiences. Here, we want to show how a semantic network can be
built from simulation of verbal experiences —(Gruselle 1998). An individual agent observes,
without further interaction, a series of natural language discourses corresponding to various
“situations’. The agent’s task isto build a semantic network from the texts, which stores both
the relationships between words, and between words and situations. The network is divided in
two levels, one corresponding to the situations (situation-nodes) and the other to the words used
to describe these situations (word-nodes) asin Figure 3. The network is built in two recurrent
phases.
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Figure 3. Stuation node at the experience level

In the acquisition phase, the system collects data from the series of discourses, segmented
in situations In each situation, each (open class) word is assigned a weight representing its
importance in the situation. The system further operates on these situation representations
which form the network’ sfirst level, or the experience level (cf. Figure 4). Links between nodes
have aweight, which stands for the facility to spread activation between the nodes. At thislevel,
situation-nodes and word-nodes alternate; they are assigned an activity level which represents
their pregnancy when a new situation is processed.
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Figure 4. Two conceptual clusters at the experience level

The system selects only a few words among the current situation before adding it to the
network. Thisfilter is the computational counterpart of the working memory with alimited
capacity described by psychologists. In order to select these words the system uses the
weighted links between existing word-nodes and severa other criteria For instance, the
familiarity criterion increases the weights of links corresponding to words which are already in
the network. Another criterion (the curiosity) allows the system to store new words in its short
term memory, in such away that not too much of them be present (since atoo new situation
cannot be related to previous knowledge, and therefore cannot be understood). Then, the new
nodes (situation- and word-nodes) are added to the network and activity is spread from the new
situation-node, which modifies the level of activity of other nodes. Thus, the system computes
new weights between these nodes using a Hebbian law.



During the structuring phase, the system builds the network’s conceptual level from the
level of experience. This phase occurs once enough situations were added to the network. The
system spreads activity from each couple <word-node, situation-node> around a word-node.
This allows the system to determine a pattern of nodes and weights representing the different
meanings of the word. For example, in Figure 4, six initially distinct sets of points (one around
each situation) will be clustered in two general sets (S1, 2, 3, 4 and S5, 6). This allows the
system to disambiguate contextually the meaning of aword, using the activities of the other
words belonging to the same cluster in the constructed network.

Then the system then creates the corresponding conceptual nodes at the conceptual level,
and links to it each node of the activation pattern, also using weighted links. The links between
conceptual nodes represent the semantic proximity between meanings (Figure 5).
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Figure 5. The emergence of two conceptual nodes

In order to implement the system, the most adequate propagation laws and their application
conditions had to be determined experimentally, as well as the thresholds for the clustering of
words and concepts. Various simulations have shown the feasibility of the system, using a
French newspaper corpus.

The model thus elaborated constitutes a*“long term memory”, and may explain some of its
relations to short term memory. Depending on their activity level, nodes may be considered as
belonging only to long term memory (low level), or, when adequately activated, they enter the
short term memory too. This provides a convenient articulation, within the CARAMEL model,
with the attention states and the automatic/reflective processes, as described elsewhere (Sabah
1995, 19974).

5. Perspective: towards a synthesis

In this paper, we have described three levels of experimentation for the automatic
acquisition of (pre)linguistic capacities. We have first shown how categorisation, values and
motor control could be implemented in a very simple agent. We then studied the emergence of
simple syntactic conventions in a group of agents which are capable of describing situations to
each other. Further work aims to replace their built-in categorisation with a more redlistic



mechanism inspired from both the first and the third model. Indeed, the last experiment has
shown how meaning can be learned from perceptua experiences (restricted here to discourses),
and how the symbolic aspects of words may be acquired.

There are at least three models of language emergence in nature: the evolution of language,
the acquisition of language, and creolisation (Bickerton 1990). Even if thefirst and second
provide inspiration to our modelling, it isthe third that will probably lead us to an integrative
model. Indeed, in Bickerton's view, creole children probably acquire lexical semantics by
repetition and association (our third model), but they develop syntax despite their parents
inability to useit. In terms of agents, instructor agents could thus lack syntactic abilities, and
provide the communication code with alexicon, acquired by “infant agents’, which further
establish syntactic conventions using “innate” syntactic devices.

Clearly alot of work remains to be done to integrate this in a coherent system within which
genuine semantics can emerge, but we hope to have been convincing enough to show with
experimental evidence that thisis not as far from our modelling capabilities as some could
clam.
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